

Overview

Goal: Automatically *label* raw mocap point clouds (MPC) and solve SMPL-X bodies.

Problem: A MPC has missing data, noise, and "ghost" points. The assignment of points to labels is unknown. Existing methods are constrained to small range of motions, a single body shape, a certain capture scenario, a special marker layout, or require a subject-specific calibration sequence.

Solution: A robust, automatic mocap solving pipeline that works with archival data, different mocap technologies, poor data quality, and varying subjects and motions.

Synthetic Training MoCap

Place virtual markers on synthetic SMPL-X [2] bodies of AMASS [3],

SMPL-X $(\theta_b, \beta, \gamma) : \mathbb{R}^{|\theta_b| \times |\beta| \times |\gamma|} \to \mathbb{R}^{3N}$.

Augment synthetic markers with controllable noise.

Self-attention on Sparse 3D Point Cloud

Layers of **Transformer** [4] elements process varying number of mocap points and produce a score matrix S.

Constrained Inexact Matching

Normalization to encourage bijective label-point correspondence. Unassigned points and labels are set to null by the normalization layer.

SOMA: Solving Optical Marker-Based MoCap Automatically Nima Ghorbani, Michael J. Black MPI for Intelligent Systems Tübingen soma@tue.mpg.de

=

Training Loss

Log-likelihood of augmented assignment matrix, and its ground truth.

Down-weight the influence of the over-represented class by the reciprocal of its occurrence frequency.

References

[1] M. Loper et al., MoSh: motion and shape capture from sparse markers, SIGGRAF [2] G. Pavlakos et al., Expressive body capture: 3D hands, face, and body from a sing [3] N. Mahmood et al., AMASS, Archive of Motion Capture as Surface Shapes, ICCV [4] Vaswani et al. Attention is all you need. NIPs 2017

	Experiments									
	Ablation Study									
		Version				Accuracy		F 1		
	Base	Base				95.50 ± 5.33		94.66 ± 6.03		
	- AMASS Noise Model				9	94.73 ± 5.52		93.73 ± 6.25		
	- C /	- CAESAR bodies				95.21 ± 6.83		94.31 ± 7.57		
	- L c	- Log-Softmax Instead of Sinkhorn				9151 ± 1069		90.10 ± 11.47		
	- Random Marker Placement				9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	89.41 ± 8.06		87.78 ± 8.85		
	- NC Tr	Transformer				11.26 ± 6.50		754 ± 622		
· · ·	- 11						11.30 ± 0.34 7.34 ± 0.22			
	Comparison With Previous Work									
MoSh	N	Method		Numbe	er of Exa	ct Per-Fra	Frame Occlusions			
				1	2	3	4	5	5+G	
	Holzrei	ter et al.	88.16	79.00	72.42	67.16	61.13	52.10		
	Maycoo	Maycock et al.		79.35	76.44	74.91	71.17	65.83		
	Ghorba	Ghorbani et al.		96.56	96.13	95.87	95.75	94.90		
	SOMA	SOMA-Real		98.97	98.85	98.68	98.48	98.22	98.29	
	SOMA	SOMA-Synthetic		98.9 2	98.54	98.17	97.61	97.07	95.13	
$\tau n \cdot \vee I $	SOMA*		98.38	98.28	98.17	98.03	97.86	97.66	97.56	
$L^{n_t \wedge L }$	MoCap Solving Performance									
$\frac{-1}{\sum_{i,j} G'_{i,j}} \sum_{i,j} W_{i,j} \cdot G'_{i,j} \cdot log(A'_{i,j})$	Name	# Frames	# Motions	Acc. F1		$\frac{V2V_{mm}^{mean}}{V2V_{mm}^{median}}$		$2V_{mm}^{median}$		
	Clap	7572	6	$100.00 \pm 0.00 100.00 \pm 0.00 \\ 00.78 \pm 0.87 00.68 \pm 1.20$		$0.00 \pm$ 0.15 \pm	0.00 ± 0.08 0.00 0.15 \pm 1.76 0.00			
	Jump	9621	6 6	99.78 ± 0.87 99.08 ± 1.2 99.99 ± 0.13 99.99 ± 0.2		$.08 \pm 1.29$ $.99 \pm 0.25$	0.13 ± 1.70 0.00 0.03 ± 0.72 0.00		0.00	
	Kick	10787	6	99.59 ± 1.18 99.48 ± 1.50		$0.75 \pm$	0.75 ± 6.92 0.00			
	Lift	16932	6	100.00 ± 0	0.00 100	0.00 ± 0.00	$0.00 \pm$	0.06	0.00	
	Random	19617	7	100.00 ± 0	0.05 100	0.00 ± 0.09	$0.00 \pm$	0.21	0.00	
	Kun Sit	9330	6 6	100.00 ± 0 100.00 ± 0	0.00 100	0.00 ± 0.00	$0.00 \pm 0.00 \pm$	0.00	0.00	
PH Asia, 2014	Squat	11287	6	100.00 ± 0.00	0.00 100	0.00 ± 0.00	$0.00 \pm$ $0.01 \pm$	0.13	0.00	
gle image, CVPR 2019	Throw	Throw 9292		99.99 ± 0	.15 99	99.99 ± 0.22 0.00		± 0.09 0.00		
2019	Walk	12264	6	100.00 ± 0	0.00 100	0.00 ± 0.00	$0.00 \pm$	0.11	0.00	
		131580	69	99.94 ± 0	99	$.92 \pm 0.64$	$0.08 \pm$	2.09	0.00	

https://soma.is.tue.mpg.de/