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Figure 1. HOLD: Given a monocular video sequence of a hand interacting with an unknown object, our method, HOLD, reconstructs
high-quality 3D hand and object surfaces in both in-the-lab videos from a static camera and in-the-wild egocentric-view videos. Here we
show the input images and the reconstructed normals. Best viewed in color.

Abstract

Since humans interact with diverse objects every day,
the holistic 3D capture of these interactions is important
to understand and model human behaviour. However,
most existing methods for hand-object reconstruction from
RGB either assume pre-scanned object templates or heav-
ily rely on limited 3D hand-object data, restricting their
ability to scale and generalize to more unconstrained in-
teraction settings. To this end, we introduce HOLD – the
first category-agnostic method that reconstructs an artic-
ulated hand and object jointly from a monocular interac-
tion video. We develop a compositional articulated implicit
model that can reconstruct disentangled 3D hand and ob-
ject from 2D images. We also further incorporate hand-
object constraints to improve hand-object poses and conse-
quently the reconstruction quality. Our method does not
rely on 3D hand-object annotations while outperforming
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fully-supervised baselines in both in-the-lab and challeng-
ing in-the-wild settings. Moreover, we qualitatively show its
robustness in reconstructing from in-the-wild videos. Code:
https://github.com/zc-alexfan/hold

1. Introduction

We interact with a diverse set of objects in our everyday
lives: We hold our morning cup of coffee; we hold a drill
when making home renovation; and we pour cereal from a
box. Studies show that on average, we interact with 140
objects per day [40]. To understand and model these inter-
actions, it is critical to be able to reconstruct them in 3D.
Toward this goal, we tackle the challenging problem of re-
constructing diverse 3D objects and the articulated hands
holding them from only a monocular video of the hand-
object interaction, as illustrated in Fig. 1.

Most hand-object reconstruction methods assume a pre-
scanned object template [9, 18, 19, 62], making it infeasible
to scale to in-the-wild scenarios [2]. Other methods do not
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assume object templates [17, 23, 65], but are trained us-
ing datasets with a limited number of objects, leading to
poor generalization. Very recently, Ye et al. [66] introduced
a data-driven prior that is trained on six object categories
and they leverage this prior to reconstruct hand and object
surfaces from segmentation mask observations. Although
they can reconstruct novel objects and articulated hands,
their method is limited to these training categories. An-
other emerging line of work focuses on in-hand object scan-
ning [16, 21, 72] from monocular videos. They adapt multi-
view reconstruction techniques to aggregate observations of
hand-held objects in multiple rigid poses. While achiev-
ing promising reconstruction quality on novel objects, these
methods do not consider hand articulation and hence cannot
handle more dexterous hand-object interaction.

In this paper, we go beyond prior works to tackle the
problem of category-agnostic reconstruction of hands and
objects. Given a monocular video as input, our method
HOLD (Hand and Object reconstruction by Leveraging in-
teraction constraints in three Dimensions) reconstructs hand
and object 3D surfaces for every frame without assuming an
object template. Our key insight is that hands and objects
in interaction provide complementary cues to each other’s
shapes and poses. For example, when one holds a coffee
mug, the hand geometry infers the shape of the mug via con-
tact. Thus, we propose to jointly model the object and artic-
ulated hand with a compositional neural implicit model.

To jointly reconstruct the hand and object surfaces from
a video, HOLD performs initial hand pose estimation via
an off-the-shelf hand regressor and object pose estimation
with structure-from-motion (SfM). With the initial noisy
hand and object poses, we train HOLD-Net, our compo-
sitional neural implicit model of an articulated hand, and
an object. The model is volumetrically rendered and super-
vised with auxiliary losses to obtain the 3D hand and object
surfaces. After initializing the hand and object shapes by
training HOLD-Net, we optimize hand and object poses via
interaction constraints. Finally, we use the refined poses to
train HOLD-Net for better shape reconstruction.

We empirically show that by jointly modelling the hand
and object in this category-agnostic reconstruction setting
through interaction constraints, we achieve better recon-
struction quality than methods that only consider objects.
We quantitatively evaluate our method with an existing
hand-object dataset and further show that our method can
generalize to both in-the-lab and in-the-wild videos. We
also demonstrate generalization to videos captured by a
moving camera from both 3rd person and 1st person views
with diverse lighting and background conditions.

To summarize our contributions: 1) We present a novel
method that accurately reconstructs 3D hand and object sur-
faces from monocular 2D interaction videos without requir-
ing a pre-scanned object template or pre-trained object cate-

gories. 2) We formulate a compositional implicit model that
facilitates the disentanglement and the reconstruction of 3D
hand and object. 3) We show that by jointly optimizing
hand-object constraints, we can obtain better reconstruction
quality than treating the hand and object separately. 4) We
evaluate our method both qualitatively and quantitatively
for 3D reconstruction, and we demonstrate realistic recon-
struction on challenging in-the-wild videos. Our model and
code will be available for research.

2. Related Work
3D hand pose and shape recovery: The field of monocu-
lar RGB 3D hand reconstruction has been evolving since the
foundational work of Rehg and Kanade [44]. A significant
portion of the existing literature is focused exclusively on
reconstructing the hand [1, 4, 8, 10, 17, 22, 29, 36, 38, 48–
51, 58, 68, 71, 74, 75]. For instance, Zimmermann et
al. [75] employ a deep convolutional network, implement-
ing a multi-stage approach to achieve 3D hand pose esti-
mation. Spurr et al. [50] incorporate biomechanical con-
straints to refine and stabilize the predictions of hand poses.
Recently, there are also methods that reconstruct 3D hand
poses of strongly interacting hands [14, 26, 28, 29, 34–
37, 39]. Tse et al. [57] introduce a spectral graph-based
transformer for two hand reconstruction. Compare to these
methods, we focus on hand-object reconstruction.
Hand-object reconstruction: Reconstructing the hand
and object in 3D from images and videos is also a well-
established research area [7, 11, 17–19, 32, 55, 56, 62,
63, 73]. Most methods in the literature assume an ob-
ject template and only estimate the object and hand pose
[2, 7, 32, 55, 63]. For example, Tekin et al. [63] infer 3D
control points for both the hand and the object in videos, us-
ing a temporal model to propagate information across time.
Liu et al. [32] devise a semi-supervised learning approach
by first constructing pseudo-groundtruth on hand-object in-
teraction videos based on temporal heuristics and train the
model with the new annotation. Yang et al. [63] introduce
a contact potential field for better hand-object contact for a
given object. Despite accurate object pose estimation qual-
ity, it is hard to generalize such work to novel objects and in-
the-wild videos because it requires known object templates.
There are methods that do not assume an object template by
training on 3D hand-object data [5, 17, 23, 65]. Unfortu-
nately, these methods have poor generalization ability due
to limited 3D hand-object data. Recently, there are more
generalizable approaches [21, 42, 43, 53, 66] with differ-
entiable rendering and data-driven priors. However, they
require either the hand to be rigid when interacting with
objects [21, 42], multi-view observation [43], or category-
level hand-object supervision [66]. In contrast to them, our
method allows articulated hands, only requires monocular
view, and is category-agnostic.
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Figure 2. Method overview. For each image in a video, our method, HOLD, first initializes the hand and object poses using off-the-shelf
estimators. Then we briefly pre-train HOLD-Net, a compositional implicit signed distance field to learn hand and object shapes. The
learned shapes of HOLD-Net are then used to refine poses with hand-object interaction constraints. Finally, we use the refined poses to
fully train HOLD-Net to learn accurate 3D geometries of hand and object.

In-hand object scanning: There have been increasing in-
terests in in-hand object scanning. The goal of this task is
to reconstruct canonical 3D object shape from a video of
a human interacting with an object; the hand is often not
reconstructed. For example, early works such as Tzionas
et al. [59] leverage hand motion as a prior for object scan-
ning. Recently, BundleSDF [61] estimates the object pose
with the help of sequential RGBD images and simultane-
ously reconstructs the implicit surface defined by the Signed
Distance Function (SDF). HHOR [21] also employs SDFs
for object surface representation but distinguishes itself by
concurrently reconstructing both the object and the hand,
assuming the object is securely gripped. Hampali et al. [16]
propose a novel approach, incorporating a camera trajec-
tory alignment technique and utilizing volumetric rendering
for enhanced object surface reconstruction. Very recently,
Zhong et al. [72] introduce a global coloring and relighting
network that significantly improves texture extraction dur-
ing the object scanning process. In contrast to our work, the
methods above do not reconstruct hands with articulation
and mainly focus on capturing the object canonical shape.

3. Method: HOLD
Figure 2 summarizes our method, HOLD, for reconstruct-
ing hand-object surfaces from a monocular RGB video. To
achieve this, HOLD first initializes hand and object poses
(Sec. 3.1) for each frame in a video. Then we use the
poses to train HOLD-Net (Sec. 3.2), a compositional im-
plicit signed distance field for hand and object shapes with
a small amount of epochs. Using the learned shapes, we re-
fine hand-object poses via interaction constraints (Sec. 3.3).
Finally, with the refined poses we fully train HOLD-Net
(Sec. 3.4), resulting in accurate 3D hand-object geometry.

3.1. Pose initialization

For each frame, to obtain hand poses θ, shape β, global
rotation Rh ∈ SO(3) and translation th ∈ IR3, we use
an off-the-shelf hand pose estimator [30]. Estimating ob-
ject pose is more challenging because our approach is cat-
egory agnostic and existing category-level object pose esti-

mators are unsuitable for out-of-category objects [3, 60].
Consequently, following [16], we first create object-only
images for each video by masking out the object pixels us-
ing an off-the-shelf segmentation network [25]. We then
use HLoc [46, 47] to perform structure-from-motion (SfM)
to obtain a point cloud defining the object and its rotation
Ro ∈ SO(3) and translation to ∈ IR3 for each frame. Since
SfM only reconstructs point clouds up to a scale, to align
the hand and object in the same space and to estimate the
object scale s ∈ IR, we perform a simple optimization pro-
cedure that encourages hand-object contact while enforcing
the 2D reprojection of hand joints and the object point cloud
to match with the original 2D projection. This optimization
updates hand and object translation {th, to} for each frame,
the hand shape β, and an object scale s. Details in SupMat.

3.2. HOLD-Net training

3.2.1 HOLD-Net

Inspired by [13, 64], we represent the hand and object
surfaces as two neural representations that can be volu-
metrically rendered into an RGB image. We use a time-
dependent NeRF++ [70] to model the dynamic background.
Our HOLD-Net model is illustrated in Fig. 3
Hand model: We model the hand as an implicit network,
driven by MANO pose θ, global rotation Rh, and transla-
tion th. To model the hand shape and appearance in canoni-
cal space, we use a signed distance and texture field param-
eterized by a multi-layer perception (MLP):

fh : R3 → R× R3 (1)
x 7→ d, c, (2)

where the MLP fh, with learnable parameters ψh, takes in
a canonical point x, and predicts its signed distance values
to the hand surface d and color c.

To determine the signed distance and color in the de-
formed observation space, we map points in the observation
space x′ back to the canonical space using inverse LBS:

x = (
∑nb

i=1wi(x
′) ·Bi)

−1x′, (3)



Rigid 
transform

Inverse
LBS

Refine pose (Sec. 3.3)

Initialize pose
(Sec. 3.1)

HOLD-Net
(Sec. 3.2.1)

HOLD-NetHand-object pose Sampling points on pixel

Hand

Object

Background

Canonical networks Compositional integration

fh

fo

fb

Pixel

Figure 3. HOLD-Net. Given as input hand and object poses and a query pixel, HOLD-Net determines the pixel color in the following
steps. 1) HOLD-Net first samples points along the ray independently for object, hand, and background using error-bounded sampling. 2)
These sampled points in the observation space are then mapped to the canonical space. Object points are rigidly transformed based on
the object pose and hand points undergo articulated deformation with inverse linear blend skinning. 3) The SDF and color values for the
sampled points are queried from the canonical hand, object, and background networks. 4) All object, hand, and background points are
aggregated and their color and density values are integrated to determine the pixel color.

where {Bi}i=1,...,nb
are the bone transformations derived

from θ with forward kinematics, and {wi(x
′)}i=1,...,nb

are
the skinning weights of each deformed point determined by
averaging the skinning weights of the K-nearest vertices of
the MANO model [45] weighted by the distance.
Object model: Similar to the hand model, our object model
is driven by the relative object scale s, rotation Ro and
translation to between the canonical and deformed space re-
spectively. The object canonical shape and texture are mod-
elled via a neural signed distance and texture field fo, with
learnable parameters ψo:

fo : R3 × Rnz,o → R× R3 (4)
x, zo 7→ d, c, (5)

where zo ∈ Rnz,o of dimension nz,o = 32 is an optimizable
dependent latent code to model the changing object appear-
ance due to varying pose, occlusion and shadows.

To determine the signed distance and color of the object
in the deformed observation space, we map points in the
observation space x′ back to the canonical space using a
simple rigid transformation:

x = (sRo)
−1 · (x′ − to). (6)

Background: Following [13, 64], we define a bounding
sphere of the foreground scene, in our case the hand and the
object. For a given sample x′ outside the bounding sphere,
the signed distance and color are predicted by a background
network with learnable parameters ψb:

fb : R3 × R3 × Rnz,b → R× R3 (7)
x,v, zb 7→ d, c, (8)

where v ∈ R3 is the viewing direction and z ∈ Rnz,b of
dimension nz,b = 32 is an optimizable latent code with dis-
tinct value for each frame to model dynamic backgrounds.

Since we are only interested in modelling hands and ob-
jects, and images of human interaction often obtain parts
of the body, this model is also used to explain partial ob-
servation of the human body as part of the changing back-
ground. Following NeRF++ [70], we use their inverted
sphere parametrization in our background model. More de-
tails can be found in SupMat.
Compositional volumetric rendering: Following [64], to
convert hand and object SDFs to density σ for volume ren-
dering, we use the cumulative distribution function of the
scaled Laplace distribution, denoted as Γα1,α2

(s), where
α1, α2 > 0 are optimizable (see [64] for details).

To render the foreground, i.e., the hand and object, we
first sample points along the corresponding ray r parame-
terized by a camera center o and a viewing direction v us-
ing error-bounded sampling [64]. We sample n points for
the hand {x′}hi=1,...,n, transform them to canonical space
using inverse LBS, and query their opacity and color val-
ues {(σi, ci)}hi=1,...,n from the canonical hand model fh.
Similarly for the object, we sample n points {xi}i=1,··· ,n
along the same ray, and obtain their density and color
{(σi, ci)}oi=1,...,n by transforming them rigidly back to the
canonical object model. We then sort and merge the two sets
of samples via their depth value to obtain {(σi, ci)}i=1,...,2n

and perform volumetric rendering:

CF (r) =
∑2n

i=1τici (9)

where τi = exp
(
−
∑

j<iσjδj

)
(1− exp (−σiδi))

and δi is the distance between two consecutive samples.
Similarly, we determine the background color CB(r) by
querying the density and color of sampled points from the
background network. To composite the background and
foreground, we render the foreground mask probability of a
ray r, which can be derived as MF (r) =

∑2n
i=1 τi ∈ IR. To



render with the dynamic background, the final color value
of the ray is defined as

C(r) = CF (r) + (1−MF (r))CB(r) (10)

where CB(r) is the background color value. Similar to de-
termining the foreground probability, our model also deter-
mines the amodal mask [27] probability of a pixel belong-
ing to hand Mh(r) ∈ IR or object Mo(r) ∈ IR by accu-
mulating the transmittance of hand or object samples inde-
pendently. In addition, our model renders the class prob-
ability S(r) ∈ IR3 between hand, object, and background
of each pixel by following the rendering procedure in Eq. 9
and Eq. 10, while replacing the color c of each sample point
with a one-hot three-vector for each class.

3.2.2 Training losses

Since reconstructing the 3D hand and object shapes from
a monocular video is highly under-constrained, we devise a
loss L consisting of several terms to optimize for the texture
and shape network parameters {ψh, ψo, ψb}, the per-frame
parameters {θ,Rh, th,Ro, to, zo, zb}, and global parame-
ters {β, s}.

In particular, we first encourage RGB values to be con-
sistent with the input image via

Lrgb =
∑

r

∥∥∥C(r)− Ĉ(r)
∥∥∥ (11)

where r is a ray casted from a sampled pixel on an image,
and C(r) and Ĉ(r) are the rendered and ground-truth color.

To encourage disentanglement between the hand, object,
and background, we enforce a multi-class segmentation loss

Lsegm =
∑

r

∥∥∥S(r)− Ŝ(r)
∥∥∥ , (12)

where Ŝ(r) ∈ IR3 is a one-hot vector representing the pre-
dicted class of a pixel, obtained with an off-the-shelf seg-
mentation network [25]. To regularize the hand and object
shapes, we sample points uniformly at random as well as
around the surface of the hand and object in their canonical
space. We then enforce the eikonal loss Leikonal [12] to reg-
ularize the canonical hand and object shapes. To provide a
shape prior for the hand, using the same set of samples, we
enforce the SDF predicted by our canonical hand model to
be similar to the one from a MANO model using the fol-
lowing loss:

Lsdf =
∑
x∈X

∥fh(x)− SDF (x)∥ (13)

where X is a set of randomly sampled points in canonical
space and SDF (x) is the signed distance from the MANO

mesh. To obtain a smooth SDF from the MANO mesh, we
sub-divide MANO using Loop subdivision [33].

Finally, to enforce sparsity of the hand density outside
of its surface, for a ray r that is far from the MANO hand
mesh, we enforce its amodal mask probability Mh(r) to be
zero. A ray r is far away from a mesh if its closest distance
to the mesh exceeds a threshold. Similarly, we periodically
construct an object mesh via marching cubes and use it to
enforce the object sparsity loss when the ray of a pixel is far
away from the object. Formally,

Lsparse =
∑

r∈Fh

∥Mh(r)∥+
∑

r∈Fo

∥Mo(r)∥ (14)

where Fh and Fo are the set of rays that are far from the
hand and object meshes respectively. The total loss L is
defined as

L = Lrgb + λsegmLsegm + λsdfLsdf

+ λsparseLsparse + λeikonalLeikonal (15)

where λ∗ are the weights for the losses. Note that since
predicted segmentation masks are often noisy we gradually
decrease λsegm over time and gradually increase the prior
weights λsdf and λsparse over time.

3.3. Pose refinement

The poses from Sec. 3.1 are imperfect because object point
clouds from SfM are noisy, and the hand shape parame-
ters are not optimized. While jointly training HOLD-Net
and optimizing the poses could theoretically resolve noisy
poses, we empirically find that this strategy is inefficient
as the pose of each training frame gets only sparse train-
ing signals, i.e. only when the the corresponding frame
is sampled. To obtain accurate poses efficiently, we first
train HOLD-Net for a small number of epochs to ob-
tain a coarse estimate of the object shape. Then we fol-
low [67] and refine the hand and object pose parameters
{Rh, th,Ro, to, β, s} with mesh-based constraints, using
the object mesh extracted from HOLD and MANO.

In particular, we encourage contact between frequently
contacted hand vertices Vtips (vertex ids from [17]) and the
object vertices by encouraging each such hand vertex to be
close to an object vertex. Formally, the loss is defined as:

Lcontact =
∑
i

min
j

∥∥Vi
tips −Vj

o

∥∥ . (16)

To provide better pixel-alignment for the hand and the ob-
ject, we use Soft Rasterizer [31] to render the hand amodal
masks Mh and object amodal masks Mo and encourage
it to match the masks from off-the-shelf semantic segmen-
tation using an occlusion-aware term Lmask similar to [69]
(see SupMat). These simple terms work well in practice;
see SupMat for more discussion.



3.4. Final training

Given the refined hand pose parameters {θ} from Sec. 3.2
and {β,Rh, th,Ro, to, s} from Sec. 3.3, we fully train
HOLD-Net with the loss L following the formulation in
Sec. 3.2 to reconstruct the 3D hand and object geometries
for every frame of an input video. To avoid artifacts that
fh, fo, fb could have learnt during pre-training due to in-
accurate poses, we train {ψh, ψo, ψb, zo, zb} from scratch.
For brevity, we ignore the timestamp for frame-specific pa-
rameters. Note that HOLD-Net is pre-trained with half the
number of epochs compared to this full-training stage for
computational efficiency as we observe that the hand and
object shape stabilizes in the early stages of training.

4. Experiments

In this section, we compare our method with existing base-
lines for the category-agnostic hand-object reconstruction
task. The goal of the task is to reconstruct accurate 3D sur-
faces for the hand and object from monocular video obser-
vations, where we do not assume an object template.
In-the-lab dataset: We use the widely-used HO3D-v3
dataset [15] for quantitative and qualitative evaluation. The
dataset consists of RGB videos of a human hand manipu-
lating a rigid object. The hand is articulated in this dataset
and it provides accurate 3D annotations for MANO hand
parameters and 6D object poses. Since the dataset does not
release ground-truth for its evaluation set, we use sequences
in the training set for evaluation. Since our task focuses on
generalization, none of the methods here are trained using
HO3D. We downsample all sequences every 5 frames.
In-the-wild sequences: To evaluate whether our method
can generalize to diverse in-the-wild settings, we capture
sequences of household items in both in-door and out-door
scenes. We capture in both 1st-person moving view and
3rd-person static view via an iPhone 14 main camera under
different lighting conditions. For each video, we downsam-
ple it every 10 frames for our experiments.
Metrics: We use root-relative mean-per-joint error
(MPJPE) in millimeters to measure hand pose error, and
Chamfer distance in squared centimeters to evaluate object
reconstruction quality [5]. Since Chamfer distance is sensi-
tive to outliers, we also use F-score in percentage to mea-
sure local shape details [54, 66]. In particular, to evalu-
ate object template quality independent from object pose,
following [66], we perform ICP alignment to the ground-
truth mesh of the HO3D meshes allowing scale, rotation
and translation and compute the Chamfer distance (CD) and
F-score at 5mm (F5) and 10mm (F10). To measure object
pose and shape relative to the hand in 3D, we subtract each
object mesh by the predicted hand root and compute the
hand-relative Chamfer distance for the object (CDh).
Implementation details: We train each sequence using

MPJPE [mm] ↓ CD [cm2] ↓ F10 [%] ↑ CDh [cm2] ↓

iHOI† [65] 38.4 3.8 75.8 41.7
DiffHOI [66] 32.3 4.3 68.8 43.8

Ours 24.2 0.4 96.5 11.3

Table 1. Comparison with SOTA hand-object reconstruction
methods. We evaluate our method and two baselines on the HO3D
dataset. † During training, iHOI uses 3D annotation of the test
objects, while DiffHOI and ours do not use such information.

Adam [24]. In each iteration we optimize 10 randomly sam-
pled images from the sequence. For each image, we sample
256 pixels and for each pixel, we sample 64 points along the
ray. For stability, we perform gradient clipping. We perform
the initial training for 100 epochs, which requires around
10 hours using an A100 GPU. The final training takes 200
epochs. We use SAM-track [6] to derive the hand and object
segmentation masks by using point-prompting for the first
frame of each video. More details can be found in SupMat.

4.1. State-of-the-art comparison

Hand-object reconstruction: Table 1 compares our
method with existing hand-object reconstruction methods
that do not assume an object template. We observe that
HOLD significantly outperforms existing methods in terms
of hand pose (MPJPE), object pose and shape (CD) accu-
racy. Our method also infers the relative spatial arrange-
ment of the hand and object more accurately as shown by
the superior hand-relative Chamfer distance (CDh).

This improvement is also reflected in the qualitative
comparison in Fig. 4. Our method consistently produces re-
constructions that are closer to the ground-truth than those
of iHOI and DiffHOI, with notable improvements in captur-
ing the fine structures, such as the mug handle and the car
frame, as well as the dynamic postures of the hand and ob-
ject. In contrast, the reconstructions from the two baseline
methods lack details and suffer from erroneous hand and
object poses, even on the easier in-the-lab dataset. Notably,
both baseline methods use 3D supervision - iHOI is trained
on the HO3D dataset sequences with ground-truth 3D shape
and DiffHOI uses 3D shapes of diverse bottles and mugs as
training supervision. In contrast, our method only uses the
input 2D monocular video without requiring any 3D anno-
tation, while still achieving superior quality. Our method
can also reconstruct hands and objects reliably under differ-
ent backgrounds, and lighting conditions in both 3rd-person
view and moving egocentric views (see Fig. 5).
Generalization: To quantify our method’s ability to gener-
alize compared to DiffHOI, in Table 2 we split the HO3D
sequences according to whether they belong to the training
categories of DiffHOI. We see that while DiffHOI’s perfor-
mance significantly drops across all metrics for unseen cat-
egories, our method has consistent performance on all cate-



Figure 4. Qualitative comparison with SOTA. We show hands and objects reconstructed by our method and SOTA baselines from in-the-
lab (left) and in-the-wild (right) videos. Our reconstruction demonstrates more accurate shapes, richer details, and more accurate poses. In
addition, our method works consistently well on various objects, even those with unique shapes (e.g. the Lego mug on the bottom right).

Object categories MPJPE [mm] ↓ CD [cm2] ↓ F10 [%] ↑ CDh [cm2] ↓
DiffHOI DiffHOI training 34.2 1.3 83.5 42.5

Ours 22.5 0.4 95.9 10.4

DiffHOI DiffHOI unseen 30.9 6.5 57.8 44.8
Ours 25.5 0.3 96.9 12.0

Table 2. Generalization comparison. We compare the general-
ization ability of our method and the SOTA method DiffHOI. We
report results on objects within and beyond DiffHOI’s training cat-
egories. DiffHOI’s performance degrades significantly on unseen
object categories while our method produces more accurate recon-
struction consistently.

CD [cm2] ↓ F5 [%] ↑ F10 [%] ↑
Hampali [16] 1.4 57.4 79.9

Ours 0.5 84.3 94.4

Table 3. Comparison with a SOTA in-hand scanning method.
We compare our method with Hampali et al. [16] following their
protocol on HO3D.

gories. This is also reflected in Fig. 4 by the samples on the
right: our method can accurately reconstruct objects such
as the drill, while the baseline methods do not generalize to
instances that are outside their training distributions.

Interestingly, our method significantly outperforms
DiffHOI even for its training categories. We can gain in-
sight into this from the water bottle example on the top-

MPJPE [mm] ↓ CD [cm2] ↓ F10 [%] ↑ CDh [cm2] ↓
w/o hand - 0.41 95.9 -

w/o pose ref. 24.6 0.55 94.2 122.1
Ours 24.2 0.38 96.5 11.3

Table 4. Ablation study. Modelling the hand and object jointly
improves object reconstruction accuracy. Pose refinement im-
proves object and hand poses and consequently object reconstruc-
tion accuracy.

right in Fig. 4: DiffHOI tries to reconstruct bottles seen in
their data-driven prior training set, which leads to a generic
bottle. In comparison, our reconstructed bottle realistically
captures the shape details of the one in the image.
In-hand object scanning: We also compare with the
SOTA method for in-hand object scanning from Hampali
et al. [16]; see Table 3. Since there is no code released,
we train our model following their selection of sequences
and compare our canonical shape with the 3D object results
downloaded from their official webpage. We observe that
our method recovers significantly better object canonical
shapes (see CD) and local details (F5 and F10). We refer
to SupMat for qualitative comparison.

4.2. Ablation

Joint hand-object reconstruction: To verify that hand re-
construction is complementary to object reconstruction, we



Figure 5. More qualitative results. We render the normals of
hands and objects reconstructed by our method. Our method can
reliably reconstruct the objects in both static views and moving
egocentric views.

implement an ablative baseline without modeling the hand.
To be specific, we mask out the hand from all video frames
and train the object network on these processed frames. As
demonstrated in Table 4, removing the hand from our model
leads to degraded reconstruction accuracy (CD and F10). A
qualitative example is shown in Fig. 6 (a). Without hand
modeling, the reconstructed object has a hole at the hand-
grasping region because the object model needs to fit the
images with hand masked out. By jointly modeling the
hand, the object, and their occlusion, our method can faith-
fully reconstruct the object despite hand-object occlusion.
Contact-based hand-object pose refinement: To assess
the impact of pose refinement as described in Section 3.3,
we compare our model to a baseline that omits this process.
Figure 6(b) provides a rotated-view illustration that high-
lights the disparity between the baseline model and our full
approach. Without pose refinement, there is an unrealistic
separation between the hand and object, a common issue in
monocular reconstructions due to significant depth ambigu-
ity leading to spatial misalignments.

Our refinement strategy mitigates this by encouraging
hand-object contact, thereby diminishing the relative depth
uncertainty. The improvements in pose accuracy for both
the hand and the object, as well as their spatial arrange-
ment, are quantitatively evidenced in Tab. 4. Our method

Figure 6. Ablation study. (a) Jointly reconstructing hand and ob-
ject effectively reduces artifacts. (b) Without contact-based pose
refinement, the hand and object can have an erroneous spatial ar-
rangement due to depth ambiguity.

outperforms the baseline by achieving superior hand pose
accuracy, indicated by lower MPJPE, and improved rela-
tive hand Chamfer distance (CDh). These improvements
in pose accuracy also translate into more accurate object re-
constructions, as reflected by our reduced Chamfer Distance
(CD) and F10 scores.

5. Conclusion
In this paper, we propose HOLD – the first category-
agnostic method that reconstructs an articulated hand and
object jointly from a monocular interaction video. We
present a novel compositional implicit model of the object
and articulated hand that disentangles and reconstructs 3D
hands and objects from 2D observations. We further show
that jointly optimizing the hand and object via interaction
constraints leads to better reconstruction of object surfaces
than reconstructing objects in isolation. Our method sig-
nificantly outperforms fully-supervised SOTA baselines in
both in-the-lab and in-the-wild settings while not relying on
3D hand-object annotation data. Furthermore, we qualita-
tively demonstrate our method’s robustness on challenging
in-the-wild videos.
Limitations and discussion: While our method success-
fully reconstructs hand-object interactions without specific
object templates, it does face some challenges. The recon-
struction of thin or textureless objects is limited by our use
of detector-based Structure from Motion for pose initializa-
tion. Advances in detector-free SfM (e.g., [20, 52]) could
potentially address this issue. Furthermore, our reliance on
raw RGB data for supervision may hinder the reconstruc-
tion of rarely observed object regions. This could improve
with the integration of diffusion priors [41] for better object
region regularization.
Disclosure. MJB has received research gift funds from
Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB
has financial interests in Amazon, Datagen Technologies,
and Meshcapade GmbH. While MJB is a consultant for
Meshcapade, his research in this project was performed
solely at, and funded solely by, the Max Planck Society.
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Moreno-Noguer, and Grégory Rogez. GanHand: Predicting
human grasp affordances in multi-object scenes. In Com-
puter Vision and Pattern Recognition (CVPR), pages 5030–
5040, 2020. 2

[8] Zicong Fan, Adrian Spurr, Muhammed Kocabas, Siyu Tang,
Michael J. Black, and Otmar Hilliges. Learning to disam-
biguate strongly interacting hands via probabilistic per-pixel
part segmentation. In International Conference on 3D Vision
(3DV), pages 1–10, 2021. 2

[9] Zicong Fan, Omid Taheri, Dimitrios Tzionas, Muhammed
Kocabas, Manuel Kaufmann, Michael J. Black, and Otmar
Hilliges. ARCTIC: A dataset for dexterous bimanual hand-
object manipulation. In Proceedings IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023. 1

[10] Qichen Fu, Xingyu Liu, Ran Xu, Juan Carlos Niebles, and
Kris M. Kitani. Deformer: Dynamic fusion transformer for
robust hand pose estimation. In International Conference on
Computer Vision (ICCV), pages 23600–23611, 2023. 2

[11] Patrick Grady, Chengcheng Tang, Christopher D. Twigg,
Minh Vo, Samarth Brahmbhatt, and Charles C. Kemp. Con-
tactOpt: Optimizing contact to improve grasps. In Computer
Vision and Pattern Recognition (CVPR), pages 1471–1481,
2021. 2

[12] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. In International Conference on Machine Learning
(ICML), 2020. 5

[13] Chen Guo, Tianjian Jiang, Xu Chen, Jie Song, and Otmar
Hilliges. Vid2avatar: 3d avatar reconstruction from videos in

the wild via self-supervised scene decomposition. In Com-
puter Vision and Pattern Recognition (CVPR), 2023. 3, 4

[14] Zhiyang Guo, Wengang Zhou, Min Wang, Li Li, and
Houqiang Li. HandNeRF: Neural radiance fields for ani-
matable interacting hands. In Computer Vision and Pattern
Recognition (CVPR), pages 21078–21087, 2023. 2

[15] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-
cent Lepetit. HOnnotate: A method for 3D annotation of
hand and object poses. In Computer Vision and Pattern
Recognition (CVPR), pages 3193–3203, 2020. 6

[16] Shreyas Hampali, Tomas Hodan, Luan Tran, Lingni Ma,
Cem Keskin, and Vincent Lepetit. In-hand 3d object scan-
ning from an rgb sequence. Computer Vision and Pattern
Recognition (CVPR), 2023. 2, 3, 7

[17] Yana Hasson, Gül Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning joint reconstruction of hands and manipulated ob-
jects. In Computer Vision and Pattern Recognition (CVPR),
pages 11807–11816, 2019. 2, 5

[18] Yana Hasson, Bugra Tekin, Federica Bogo, Ivan Laptev,
Marc Pollefeys, and Cordelia Schmid. Leveraging photomet-
ric consistency over time for sparsely supervised hand-object
reconstruction. In Computer Vision and Pattern Recognition
(CVPR), pages 568–577, 2020. 1

[19] Yana Hasson, Gül Varol, Cordelia Schmid, and Ivan
Laptev. Towards unconstrained joint hand-object reconstruc-
tion from rgb videos. In International Conference on 3D Vi-
sion (3DV), pages 659–668. IEEE, 2021. 1, 2

[20] Xingyi He, Jiaming Sun, Yifan Wang, Sida Peng, Qixing
Huang, Hujun Bao, and Xiaowei Zhou. Detector-free struc-
ture from motion. In arxiv, 2023. 8

[21] Di Huang, Xiaopeng Ji, Xingyi He, Jiaming Sun, Tong He,
Qing Shuai, Wanli Ouyang, and Xiaowei Zhou. Reconstruct-
ing hand-held objects from monocular video. In SIGGRAPH
Asia 2022 Conference Papers, pages 1–9, 2022. 2, 3

[22] Umar Iqbal, Pavlo Molchanov, Thomas Breuel Juergen Gall,
and Jan Kautz. Hand pose estimation via latent 2.5D
heatmap regression. In European Conference on Computer
Vision (ECCV), pages 118–134, 2018. 2

[23] Korrawe Karunratanakul, Jinlong Yang, Yan Zhang,
Michael J. Black, Krikamol Muandet, and Siyu Tang. Grasp-
ing Field: Learning implicit representations for human
grasps. In International Conference on 3D Vision (3DV),
pages 333–344, 2020. 2

[24] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 6

[25] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment
anything. In International Conference on Computer Vision
(ICCV), 2023. 3, 5

[26] Jihyun Lee, Minhyuk Sung, Honggyu Choi, and Tae-Kyun
Kim. Im2hands: Learning attentive implicit representation
of interacting two-hand shapes. In Computer Vision and Pat-
tern Recognition (CVPR), pages 21169–21178, 2023. 2



[27] Ke Li and Jitendra Malik. Amodal instance segmentation.
In European Conference on Computer Vision (ECCV), pages
677–693. Springer, 2016. 5

[28] Lijun Li, Linrui Tian, Xindi Zhang, Qi Wang, Bang Zhang,
Liefeng Bo, Mengyuan Liu, and Chen Chen. Renderih: A
large-scale synthetic dataset for 3d interacting hand pose es-
timation. In International Conference on Computer Vision
(ICCV), pages 20395–20405, 2023. 2

[29] Mengcheng Li, Liang An, Hongwen Zhang, Lianpeng Wu,
Feng Chen, Tao Yu, and Yebin Liu. Interacting attention
graph for single image two-hand reconstruction. In Com-
puter Vision and Pattern Recognition (CVPR), pages 2761–
2770, 2022. 2

[30] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. In
Computer Vision and Pattern Recognition (CVPR), 2021. 3

[31] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3d rea-
soning. In International Conference on Computer Vision
(ICCV), pages 7708–7717, 2019. 5

[32] Shaowei Liu, Hanwen Jiang, Jiarui Xu, Sifei Liu, and Xi-
aolong Wang. Semi-supervised 3D hand-object poses esti-
mation with interactions in time. In Computer Vision and
Pattern Recognition (CVPR), pages 14687–14697, 2021. 2

[33] Charles Loop. Smooth subdivision surfaces based on trian-
gles. 1987. 5

[34] Hao Meng, Sheng Jin, Wentao Liu, Chen Qian, Mengxiang
Lin, Wanli Ouyang, and Ping Luo. 3D interacting hand pose
estimation by hand de-occlusion and removal. In European
Conference on Computer Vision (ECCV), pages 380–397.
Springer, 2022. 2

[35] Gyeongsik Moon. Bringing inputs to shared domains for
3d interacting hands recovery in the wild. In Computer Vi-
sion and Pattern Recognition (CVPR), pages 17028–17037,
2023.

[36] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori,
and Kyoung Mu Lee. InterHand2.6M: A dataset and base-
line for 3D interacting hand pose estimation from a single
RGB image. In European Conference on Computer Vision
(ECCV), pages 548–564, 2020. 2

[37] Gyeongsik Moon, Shunsuke Saito, Weipeng Xu, Rohan
Joshi, Julia Buffalini, Harley Bellan, Nicholas Rosen, Jesse
Richardson, Mallorie Mize, Philippe De Bree, et al. A
dataset of relighted 3d interacting hands. arXiv preprint
arXiv:2310.17768, 2023. 2

[38] Franziska Mueller, Florian Bernard, Oleksandr Sotny-
chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and
Christian Theobalt. GANerated hands for real-time 3D hand
tracking from monocular RGB. In Computer Vision and Pat-
tern Recognition (CVPR), pages 49–59, 2018. 2

[39] Takehiko Ohkawa, Kun He, Fadime Sener, Tomas Hodan,
Luan Tran, and Cem Keskin. AssemblyHands: towards ego-
centric activity understanding via 3d hand pose estimation.
In Computer Vision and Pattern Recognition (CVPR), pages
12999–13008, 2023. 2

[40] Valeria Perasso. What have you touched today?, 2015. 1

[41] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv,
2022. 8

[42] Aditya Prakash, Matthew Chang, Matthew Jin, and Saurabh
Gupta. Learning hand-held object reconstruction from in-
the-wild videos. arXiv, 2305.03036, 2023. 2

[43] Wentian Qu, Zhaopeng Cui, Yinda Zhang, Chenyu Meng,
Cuixia Ma, Xiaoming Deng, and Hongan Wang. Novel-
view synthesis and pose estimation for hand-object interac-
tion from sparse views. In International Conference on Com-
puter Vision (ICCV), pages 15100–15111, 2023. 2

[44] James M. Rehg and Takeo Kanade. Visual tracking of
high DOF articulated structures: An application to human
hand tracking. In European Conference on Computer Vision
(ECCV), pages 35–46, 1994. 2

[45] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bod-
ies together. Transactions on Graphics (TOG), 36(6):245:1–
245:17, 2017. 4

[46] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From coarse to fine: Robust hierarchical
localization at large scale. In Computer Vision and Pattern
Recognition (CVPR), 2019. 3

[47] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. SuperGlue: Learning feature
matching with graph neural networks. In Computer Vision
and Pattern Recognition (CVPR), 2020. 3

[48] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser
Sheikh. Hand keypoint detection in single images using mul-
tiview bootstrapping. In Computer Vision and Pattern Recog-
nition (CVPR), pages 4645–4653, 2017. 2

[49] Adrian Spurr, Jie Song, Seonwook Park, and Otmar Hilliges.
Cross-modal deep variational hand pose estimation. In Com-
puter Vision and Pattern Recognition (CVPR), pages 89–98,
2018.

[50] Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Otmar Hilliges,
and Jan Kautz. Weakly supervised 3D hand pose estimation
via biomechanical constraints. In European Conference on
Computer Vision (ECCV), pages 211–228, 2020. 2

[51] Adrian Spurr, Aneesh Dahiya, Xi Wang, Xucong Zhang,
and Otmar Hilliges. Self-supervised 3D hand pose estima-
tion from monocular RGB via contrastive learning. In In-
ternational Conference on Computer Vision (ICCV), pages
11210–11219, 2021. 2

[52] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and
Xiaowei Zhou. LoFTR: Detector-free local feature matching
with transformers. Computer Vision and Pattern Recognition
(CVPR), 2021. 8

[53] Anilkumar Swamy, Vincent Leroy, Philippe Weinzaepfel,
Fabien Baradel, Salma Galaaoui, Romain Brégier, Matthieu
Armando, Jean-Sebastien Franco, and Grégory Rogez.
SHOWMe: Benchmarking object-agnostic hand-object 3d
reconstruction. In International Conference on Computer Vi-
sion (ICCV), pages 1935–1944, 2023. 2

[54] Maxim Tatarchenko, Stephan R Richter, René Ranftl,
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