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Figure 1. ARCTIC is a dataset of hands dexterously manipulating articulated objects. The dataset contains videos from both eight
3rd-person allocentric views (a) and one 1st-person egocentric view (b), together with accurate ground-truth 3D hand and object meshes,
captured with a high-quality motion capture system. ARCTIC goes beyond existing datasets to enable the study of dexterous bimanual
manipulation of articulated objects (c) and provides detailed contact information between the hands and objects during manipulation (d-e).

Abstract
Humans intuitively understand that inanimate objects do

not move by themselves, but that state changes are typi-
cally caused by human manipulation (e.g., the opening of
a book). This is not yet the case for machines. In part this
is because there exist no datasets with ground-truth 3D an-
notations for the study of physically consistent and synchro-
nised motion of hands and articulated objects. To this end,
we introduce ARCTIC – a dataset of two hands that dex-
terously manipulate objects, containing 2.1M video frames
paired with accurate 3D hand and object meshes and de-
tailed, dynamic contact information. It contains bi-manual
articulation of objects such as scissors or laptops, where
hand poses and object states evolve jointly in time. We pro-
pose two novel articulated hand-object interaction tasks:
(1) Consistent motion reconstruction: Given a monocular
video, the goal is to reconstruct two hands and articulated
objects in 3D, so that their motions are spatio-temporally
consistent. (2) Interaction field estimation: Dense rela-
tive hand-object distances must be estimated from images.
We introduce two baselines ArcticNet and InterField, re-
spectively and evaluate them qualitatively and quantita-
tively on ARCTIC. Our code and data are available at
https://arctic.is.tue.mpg.de.

1. Introduction
Humans constantly manipulate complex objects: we

open our laptop’s cover to work, we apply spray to clean, we
carefully control our fingers to cut with scissors – rigid and
articulated parts of objects move together with our hands.
Inanimate objects only move or deform if external forces
are applied to them. The study of the physically consis-
tent dynamics of hands and objects during manipulation
has so far been under-researched in the hand pose estima-
tion literature. This is partly because existing hand-object
datasets [8, 22, 23, 25, 37, 41] are mostly limited to grasping
of rigid objects and contain few if any examples of rich and
dexterous manipulation of articulated objects.

To enable the study of dexterous articulated hand-object
manipulation, we collect a novel dataset called ARCTIC
(ARticulated objeCTs in InteraCtion). ARCTIC consists
of video sequences of multi-view RGB frames, and each
frame is paired with accurate 3D hand and object meshes.
ARCTIC contains data from 10 subjects interacting with 11
articulated objects, resulting in a total of 2.1M RGB im-
ages. Images are captured from multiple synchronized and
calibrated views, including 8 static allocentric views and 1
moving egocentric view. To capture accurate 3D meshes
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during manipulation, we synchronize color cameras with
54 high-resolution Vicon MoCap cameras [75]. These al-
low the use of small MoCap markers that do not interfere
with hand-object interaction and are barely visible in the
images. We then fit pre-scanned human and object meshes
to the observed markers [42,65]. The objects consist of two
rigid parts that rotate about a shared axis such as the flip
phone in Fig. 1 (for all objects, see SupMat).

Our dataset enables two novel tasks: (1) consistent mo-
tion reconstruction, (2) interaction field estimation. For
consistent motion reconstruction, given a monocular video,
the task is to reconstruct the 3D motion of two hands
and an articulated object. In particular, the reconstructed
hand-object meshes should have spatio-temporally consis-
tent hand-object contact, object articulation, and smooth
motion during interaction. This task has several chal-
lenges: (1) Spatio-temporal consistency requires precise
hand-object 3D alignment for all frames; (2) This precision
is hard to achieve due to depth ambiguity and severe occlu-
sions during dexterous manipulation; (3) The unconstrained
interaction causes more variations in hand pose and contact
than in existing datasets [8, 22, 23, 41] (see Fig. 2).

As an initial step towards addressing these challenges,
and to provide baselines for future work, we introduce
ArcticNet to reconstruct the motions of two hands and
an articulated object from a video. ArcticNet uses an
encoder-decoder architecture to estimate parameters of the
MANO hand model [53] for the two hands, and our artic-
ulated object model. We experiment with two variations of
ArcticNet: a single-frame model and a temporal model with
a recurrent architecture inspired by [34]. We provide quali-
tative and quantitative results for future comparison.

When studying hand-object interaction, contact is impor-
tant [21, 77]. Some approaches [26, 77] explore the task of
binary contact estimation from a single RGB image. In the
two-handed manipulation setting, hands can be near the ob-
ject but not in contact. To understand the dynamic, relative
spatial configuration between hands and objects in more de-
tail, even when not in contact, we propose the general task
of interaction field estimation from RGB images. The goal
is to estimate, for each hand vertex, the shortest distance to
the object mesh and vice versa (see Fig. 6 for a visualiza-
tion). We introduce a baseline, InterField, for this task and
benchmark both a single-frame and a recurrent version of
InterField on ARCTIC for future comparison.

In summary, our contributions are as follows: (1) We
present ARCTIC, the first large-scale dataset of two hands
that dexterously manipulate articulated objects, with multi-
view RGB images paired with accurate 3D meshes; (2) We
introduce two novel tasks of consistent motion reconstruc-
tion and interaction field estimation to study the physically
consistent motion of hands and articulated objects; (3) We
provide baselines for both tasks on ARCTIC.

2. Related Work
Human-object datasets: Several datasets [1, 7, 46, 61, 70,
73] contain images of human-object interaction, but here
we focus on large-scale data [3, 19, 22, 25, 27, 55, 89] that
facilitates machine learning. There are three categories. (1)
Human body with rigid objects: Bhatnagar et al. [3] and
Huang et al. [27] introduce image datasets for human body
interaction with big objects. Compared to ours, [3] do not
capture the hands. Huang et al. [27] capture hands and body
using a multi-view RGB-D setup while ours is captured us-
ing a MoCap setup for more accurate 3D data. Compared to
both, we have dexterous bimanual manipulation, dynamic
hand-object contact, and articulated objects. GRAB [65]
contains detailed human-object interaction but no images,
while BEDLAM [4] contains videos with ground-truth hu-
mans but no object interaction. (2) Single hand with rigid
objects: Most hand-object datasets [6,8,19,22,25,41] con-
sist of single-hand grasping interaction. However, hand
poses in grasping interaction are mostly static, with rela-
tively little pose variation over time. Hampali et al. [22]
use a multi-RGB-D system and fit both MANO and YCB
object meshes with sequence-level fitting and contact con-
straints. (3) Two hands with rigid objects: Kwon et al. [37]
and Hampali et al. [23] present two-hand datasets interact-
ing with rigid objects. Compared to (2) and (3), our dataset
has 3D annotations of the full human body, both hands, and
articulated objects. We go beyond grasping and focus on
less constrained dexterous bimanual manipulation. We dis-
cuss the comparison between ours (ARCTIC) and existing
hand-object datasets [8, 22, 23, 37, 41] in Sec. 3.1.
Estimating 3D hands and objects from RGB images:
Monocular RGB 3D hand reconstruction has a long history
since Rehg and Kanade [51]. Most work in the literature
focuses on hand-only reconstructions [5, 17, 25, 28, 38, 44,
45, 57–60, 71, 80, 83, 87, 87, 88]. Zimmermann et al. [88]
use a deep convolutional network for 3D hand pose estima-
tion via a multi-stage approach. Spurr et al. [59] introduce
biomechanical constraints to regularize hand pose predic-
tion. Ziani et al. [87] use a self-supervised time-contrastive
formulation to improve smoothness for hand motion recon-
struction. Recently, there has been increased interest in
hand-object reconstruction from RGB images [12, 21, 24,
25, 40, 66, 77, 86]. Tekin et al. [66] infer 3D control points
for both the hand and the object in videos, using a tempo-
ral model to propagate information across time. Hasson et
al. [25] render synthetic images and train a neural network
to regress a static grasp of a 3D hand and a rigid object, us-
ing full supervision together with contact losses. Corona et
al. [12] estimate MANO grasps for objects from an image,
by first inferring the object shape and a rough hand pose,
which is refined via contact constraints and an adversarial
prior. Liu et al. [40] use a transformer-based contextual-
reasoning module that encodes the synergy between hand



dataset real # number of: ego- image articulated both human dexterous annot.
images img view centric resol. objects hands body manipulation type

FreiHand [89] ✓ 37k 8 ✗ 224×224 ✗ ✗ ✗ ✗ semi-auto
ObMan [25] ✗ 154k 1 ✗ 256×256 ✗ ✗ ✗ ✗ synthetic
FHPA [19] ✓ 105k 1 ✓ 1920×1080 ✗ ✗ ✗ ✗ magnetic
HO3D [22] ✓ 78k 1-5 ✗ 640×480 ✗ ✗ ✗ ✗ multi-kinect
ContactPose [6] ✓ 2.9M 3 ✗ 960×540 ✗ ✗ ✗ ✗ multi-kinect
GRAB [65] - - - - - ✗ ✓ ✓ ✗ mocap
DexYCB [8] ✓ 582k 8 ✗ 640×480 ✗ ✗ ✗ ✗ multi-manual
H2O [37] ✓ 571k 5 ✓ 1280×720 ✗ ✓ ✗ ✗ multi-kinect
H2O-3D [23] ✓ 76k 5 ✗ 640×480 ✗ ✓ ✗ ✗ multi-kinect
HOI4D [41] ✓ 2.4M 1 ✓ 1280×800 ✓ ✗ ✗ ✗ single-manual
ARCTIC (Ours) ✓ 2.1M 9 ✓ 2800×2000 ✓ ✓ ✓ ✓ mocap

Table 1. Comparison of our ARCTIC dataset with existing datasets. The keyword “single/multi-manual” denotes whether single or
multiple views being used to annotate manually.

and object features, and has higher responses at contact re-
gions. Zhou et al. [84] learn an interaction motion prior to
denoise motion predicted from an off-the-shelf single-frame
hand-object reconstruction method. None of these methods
deal with articulated objects, which result in complex hand-
object interactions.

Human-object contact detection: Contact has been shown
important for: pose taxonomies [2, 18, 29], pose estima-
tion [21, 22, 25, 61, 69, 73, 77], in-hand scanning [72, 82],
and grasp synthesis [21, 31, 65, 77]. Many methods [21, 22,
61,69,73] use the proximity between the 3D hand/body and
object meshes to estimate contacts and regularize pose es-
timation based on these. Three main categories for con-
tact estimation exist: 1) directly from meshes; 2) on the
image pixel space from RGB images; 3) binary contact in
3D space from RGB images. Grady et al. [21] take off-
the-shelf regressors to estimate grasping hand and object
meshes, use these meshes to predict contacts on the objects
provided by [6], and leverage contacts to refine the grasp.
Their recent dataset [20] contains both contact and pressure
between a hand and a flat sensor surface. Tripathi et al. [68]
infer pressure from body-scene contact. Narasimhaswamy
et al. [47] and Shan et al. [56] infer bounding boxes for
hands in contact on the input RGB image. Chen et al. [9]
infer human-scene contact on pixels. Rogez et al. [52] learn
to infer contacts from the image using synthetic data, while
Pham et al. [49] use real contact data captured with instru-
mented objects. Unlike others, [52] and [49] estimate 3D
binary contact from RGB images but the former does not
generalize well to real images and the latter uses a classical
approach due to the limited amount of data. BSTRO esti-
mates contact on the 3D body from an image but does not
estimate 3D hand or object pose [26]. Hi4D [78] provides
ground-truth contact for close human interaction. In con-
trast, our task of interaction field estimation goes beyond
binary contact to model the dense relative distances between
hands and objects. Thanks to our dexterous manipulation,

ARCTIC contains fast changing hand-object contact.

3. ARCTIC Dataset
Overview: To allow the study of object articulation with
hands in motion, we construct ARCTIC, a video dataset
with accurate 3D annotation for hands and articulated ob-
jects. ARCTIC contains 339 sequences of dexterous ma-
nipulation of 11 articulated objects by 10 subjects (5 fe-
/males). The dataset consists of 2.1M RGB images from 8
static views and 1 egocentric view, paired with 3D hand and
object meshes. To capture different interaction modes, we
ask our subjects to either “use” (1.7M images) or “grasp”
(457K images) the objects. Depth images of the two hands,
the human body, and objects can be rendered from ARCTIC
(see SupMat).

3.1. Data Characteristics

Dataset features comparison: Table 1 compares ARCTIC
with existing hand-object datasets. ARCTIC is the only
dataset that contains both hands, the full human body (in
SMPL-X [48]) and articulated objects. ARCTIC provides
calibrated cameras (8 allocentric and 1 egocentric) with
high-resolution images, enabling the study of monocular,
multi-view and egocentric reconstruction settings. Impor-
tantly, ARCTIC is a motion dataset that focuses on bi-
manual dexterous manipulation, meaning that subjects can
freely interact with objects using both hands. In con-
trast, existing hand-object datasets focus single-hand grasp-
ing [8,22,25] and the movement is often controlled [23,37].
GRAB [65] has fast motion by using a similar MoCap setup
but captures only rigid objects and does not have images.
HOI4D [41] is the only hand-object dataset that contains ar-
ticulated objects, but it contains only a single view, does not
capture the full human body, has a single hand, and mainly
focuses on grasping. Crucially, their hand data is captured
from only a single egocentric view, which introduces ambi-
guity for the occluded fingers.



Figure 2. Hand pose and contact variations in datasets. (a)
T-SNE clustering of hand poses in different datasets. The plot
shows that ARCTIC has a significantly larger range of poses than
all existing datasets. (b) Frequently contacted regions for hands in
HO-3D [22], GRAB [65], and ARCTIC. As seen with the broader
heatmap spread on the hands, ARCTIC has higher contact diver-
sity. (c) Frequently contacted areas on our objects.

Capture setup comparison: Capturing dexterous manip-
ulation while maintaining the quality of 3D annotation is
extremely challenging due to fast motion and heavy occlu-
sion during the interaction. In particular, the joints of a
hand often have significant self-occlusion. The occlusion
is even more severe when a hand interacts with objects and
when there are multiple hands [44]. Existing hand-object
datasets [8,22,23,37,41] are captured with 1−8 commodity
RGB-D cameras, which is insufficient to eliminate occlu-
sion. As a result, their hand-object motion is often slow and
they mainly focus on grasping interaction. To reduce occlu-
sion and to enable the capture of dexterous manipulation,
we construct our dataset using an accurate Vicon MoCap
setup with 54 high-end infrared Vantage-16 cameras [75].
To show our dexterous motion, and to compare 3D annota-
tion quality between datasets, see our project page video.

Hand pose and contact variations: Figure 2a compares
different hand-object datasets [8,22,23,41] in terms of hand
pose variations by showing a T-SNE clustering [74] of 3D
hand joints. The plot reveals that our dataset (shown in
blue) has a significantly larger hand pose diversity than oth-
ers. This is due to the unconstrained nature of ARCTIC in
which the subjects dexterously and dynamically manipulate
the object (see project page video). The figure also shows
frequently in-contact regions on hands (b) and objects (c) in
the ARCTIC dataset. We generate the contact heatmaps fol-
lowing GRAB’s [65] approach, by integrating per-frame bi-
nary contact labels for vertices over all sequences. “Hotter”
regions denote a higher chance of being in contact while
“cooler” regions denote lower chance of contact. Similar
to HO-3D [22] and GRAB [65], finger tips in our dataset

Figure 3. Our camera views. We capture high resolution images
in 8 static allocentric and 1 moving egocentric views. Here we
show zoomed-in crops and the original images.

are most likely to be in contact with objects. However,
thanks to the dexterous manipulation it contains, ARCTIC
has higher contact likelihood in the palm region than other
datasets, hence the heatmaps appear more “spread out”. For
regular-sized everyday objects, such as the ketchup bottle,
the contact regions “agree” with our usual interaction with
them. For smaller toy objects like the waffle iron, subjects
are likely to pick up the object and support it with one hand,
leading to “hot” regions on the bottom of the object.

3.2. Acquisition Setup

We detail our motion capture (MoCap) setup to acquire
3D surfaces of strongly interacting hands and articulated
objects. We synchronize a MoCap system with a multi-
view RGB system. See SupMat for the marker sets. With
the latter we capture RGB videos from 8 static allocentric
views and 1 moving egocentric view at 30 FPS (see Fig. 3).
The capture pipeline has five steps: (1) obtaining the 3D
template geometry of the subjects and objects, (2) estimat-
ing the rotation axis for articulated objects, shown in Sup-
Mat, (3) capturing interaction using marker-based MoCap
together with calibrated and synchronized video, (4) solving
for the poses of the body, hands, and objects from MoCap
markers following [42, 65], and (5) computing hand-object
contact based on proximity, shown in SupMat.
Obtaining canonical geometry: We obtain the ground-
truth (GT) hand and body shape of each subject in a canon-
ical T-Pose using 3D scans from a 3dMD [67] scanner. We
register SMPL-X [48] to 3D scans at different time steps
in varying poses and construct a personalized 3D template
of each subject. See the SupMat for details of the template
creation. To obtain object geometries, we scan each object
using an Artec 3D hand-held scanner in a pre-defined pose.
We separate each scanned object mesh into two articulated
parts in Blender. See SupMat for all 11 articulated objects.
Capturing human-object interaction: To ensure accu-
racy, we perform full-body, hand and object tracking using
a Vicon MoCap system with 54 infrared Vantage-16 cam-
eras [75] to minimize the issues with occlusion. To capture



usable RGB images alongside the MoCap data, we balance
the trade-off between accuracy and marker intrusiveness by
using small hemispherical markers with 1.5mm radius on
the hands and objects. The markers are placed on the dorsal
side of the hand to not encumber participants during natu-
ral hand-object interaction, similar to GRAB [65]. While
our focus is on hands, we retrieve full-body pose estimates
as they provide more reliable global rotations and transla-
tions for each hand. Therefore, we fit SMPL-X [48] to the
observed markers to attain realistic wrist articulations, as
MANO contains no wrist articulation.
Obtaining surfaces from MoCap: Following [42,65], we
associate MoCap marker positions with their correspond-
ing subject/object vertices in the geometries obtained in
canonical spaces. We first pick initial guesses of marker-
to-vertex correspondence on the subject/object meshes and
use MoSh++ [42] to refine the correspondence. To obtain
the full-body and hand surface that explain the MoCap data,
we optimize SMPL-X pose using each subject’s SMPL-X
template to minimize the distance between the markers and
their correspondences on the SMPL-X mesh.

The articulated object surface is parameterized by the 6D
pose of each object’s base part and an 1D articulation rela-
tive to a canonical pose. We obtain the 6D pose of the object
base for each MoCap frame by solving for the rigid trans-
formation between the MoCap markers of the object base
at that frame, and the object vertices corresponding to the
markers in the object canonical space. The 1D articulation
is computed according to the estimated rotation axis (see
SupMat) and a pre-defined rest pose.

4. Evaluation Protocol
Data split: We split the data by subjects, 8 subjects for
training, 1 for validation (male) and 1 for testing (female).
To ensure gender balance in evaluation, we use one male
and one female subject. With this same split, we establish
two protocols: an allocentric protocol (allo) and an egocen-
tric protocol (ego). The former protocol lets us study our
tasks in the 3rd-person, while the latter is similar to 1st-
person views in a mixed-reality setting. In the allocentric
protocol, during training and evaluation, the model only has
access to images from the allocentric views. In the ego-
centric protocol, to provide additional training images, we
allow models access to images from all views of the train-
ing split, but in evaluation, only egocentric images are used.
Further information can be found in SupMat.
Metrics for consistent motion reconstruction: Our goal is
to reconstruct the 3D motion of the hands and an articulated
object during dexterous manipulation from a video. Im-
portantly, our focus extends beyond hand-object poses and
we require the reconstructed meshes to have accurate hand-
object contact (CDev), and smooth motion (ACC). Further,
when a hand moves or articulates an object, vertices of the

hand and the object in stable contact should move together
(MDev). To this end, we define the following metrics:

• Contact Deviation (CDev): For a frame, suppose
{(hi,oi)}Ci=1 are C pairs of in-contact hand-object
vertices (< 3mm distance in ground-truth), and
{(ĥi, ôi)}Ci=1 are the corresponding predictions. CDev
is defined as the average distance between ĥi and ôi in
millimeters:

1
C

∑C
i=1 ||ĥi − ôi|| (1)

This metric reflects how much the hand vertices devi-
ate from the supposed contact vertices on the object in
the prediction.

• Motion Deviation (MDev): Given a ground-truth se-
quence of a hand and an object, we denote vertex i of
the hand and vertex j of the object at frame t as ht

i,
ot
j respectively. We use (i, j,m, n) to denote ht

i has
stable contact with ot

j during a window from frame m
to frame n, and they do not have contact at time m− 1
and n+ 1 (i.e., longest contact window). Hand-object
vertex indices (i, j) have stable contact in a window
(m,n) if they are close within a threshold α for every
frame in the window:

∀t ∈ {m, · · · , n},
∥∥ht

i − ot
j

∥∥ ≤ α . (2)

Given the above definition, we extract a set of tu-
ples {(i, j,m, n)} from each GT sequence. When two
hand-object vertices ht

i, o
t
j are in stable contact within

a window, they should move in the same direction in
consecutive frames. To measure this, we define the
motion deviation for a tuple (i, j,m, n) of the pre-
dicted hand-object sequence ĥ and ô as

1
n−m

∑n
t=m+1 ||δĥt

i − δôt
j || (3)

where δĥt
i = ĥt

i − ĥt−1
i and δôt

j = ôt
j − ôt−1

j . In-
tuitively, this measures the disagreement in the mov-
ing direction between consecutive frames of in-contact
hand-object vertices in the window (m,n). We only
consider longer motions by using windows with at
least 0.5 second or 15 frames (i.e., n − m + 1 ≥ 15)
and we choose α = 3mm to detect a sufficient number
of windows. We compute this metric for all detected
windows and average over them.

• Acceleration Error (ACC): Following [34], we report
acceleration error in m/s2 to measure the smoothness
of the reconstruction, calculated as the difference in ac-
celeration between the ground-truth and predicted ver-
tex sequences for each hand and the object. We sub-
tract the root for each entity before computing the ac-
celeration [34]. The root for the object is defined as the
center of an object’s base. Note that we report this er-
ror in m/s2, while [34] reports mm/s2. See SupMat
for more details.



Apart from motion and contact, we need metrics to measure
hand and object poses, and their relative translations:

• Mean Per-Joint Position Error (MPJPE): the L2
distance (mm) between the 21 predicted and ground-
truth joints for each hand after subtracting its root.

• Average Articulation Error (AAE): the average ab-
solute error between the predicted degree of articula-
tion and the ground-truth.

• Success Rate: Following [62, 79], to measure object
reconstruction quality, we use a success rate metric that
is independent of the object size. It is the percentage of
predicted object vertices having L2 error to the ground-
truth that is less than 5% of the object diameter:

1
Vo

∑Vo

i=1 1(∥oi − ôi∥ < 0.05D)× 100% (4)

where D, Vo, oi, ôi are the diameter, the number of
object vertices, ground-truth and predicted object ver-
tices, and 1(·) is the indicator function. To decouple
the effect of root estimation, we subtract the predicted
and the ground-truth vertices by their object roots re-
spectively. The root is the center of each object’s base.

• Mean Relative-Root Position Error (MRRPE): Fol-
lowing [17, 44], to measure the root translation of be-
tween hand-hand and hand-object, we use this metric
to measure the relative root translation between two
entities a and b in the scene,

MRRPEa→b =
∥∥∥(Ja

0 − Jb
0

)
−
(
Ĵa
0 − Ĵb

0

)∥∥∥
2

, (5)

where a ∈ {l, r, o} and b ∈ {l, r, o} and l, r, o de-
note the left hand, right hand, and the object, J0 ∈ IR3

is the ground-truth root joint location and Ĵ0 the pre-
dicted one. A graphical illustration of this metric can
be found in SupMat.

Metrics for interaction field estimation: In this task,
given images from a video, for each hand vertex i, we esti-
mate its shortest distance F̂r→o

i ∈ IR to the object (i.e., the
distance field from a hand to the object) and vice versa. Tak-
ing the field from the right hand to the object as an example,
to quantify, we measure the average error between the pre-
dicted distances F̂r→o

i and the ground-truth distances Fr→o
i

in millimeters, which we call average distance error. The er-
ror is computed as:

1
Vr

∑Vr

i=1 |Fr→o
i − F̂r→o

i | (6)

where Vr is the number of right-hand vertices. To mea-
sure smoothness, we estimate the distance field for every
frame in each sequence. We then compute the accelera-
tion sequence for the predicted field sequence. The accel-
eration error is computed as the average absolute difference
between predicted and ground-truth acceleration sequences.
See SupMat for the formula of acceleration error.

CNN Object
Decoder

Right Decoder

Left Decoder

Object Model

MANO

MANO

Figure 4. ArcticNet-SF architecture. The CNN encoder yields
image features x. The hand decoders predict MANO parameters
Θl,Θr and their translation Tl,Tr while the object decoder esti-
mates the articulated object pose Ω consisting of the articulation,
rotation and translation. With parametric models of hands H(Θ)
and articulated objects O(Ω), we obtain 3D meshes for the two
hands and the articulated object .

5. Baselines and Experiments

We present two tasks on ARCTIC: consistent motion re-
construction and interaction field estimation. For consis-
tent motion reconstruction, we reconstruct the 3D motion
of two hands and an articulated object from a video. For
interaction field estimation, given a video, we estimate, for
each hand vertex, the closest distance to the object and vice
versa. Here we detail and evaluate our baselines in the two
tasks to lay the foundation for future comparison.

5.1. Consistent motion reconstruction

Problem formulation: Given a video, our goal is to recon-
struct the 3D motion of a subject’s two hands and an articu-
lated object in dexterous manipulation for every frame. Our
emphasis is to require the reconstructed hand-object meshes
to be in temporally-consistent hand-object contact and mo-
tion during object articulation and manipulation.
Parametric models: For brevity, we use l, r, and o to
denote the left hand, the right hand and the object. For
hands, we use MANO [53] to represent the hand pose and
shape by Θ = {θ, β}, which consists of parameters for
the pose θ ∈ IR48 (with global orientation) and the shape
β ∈ IR10. The MANO model maps Θ to a shaped and
posed 3D mesh H(θ, β) ∈ IR778×3. The 3D joint locations
J = WH ∈ IRJ×3 are obtained using a pre-trained lin-
ear regressor W . For each object, we construct a 3D model
O(·) using the scanned object mesh, the estimated rotation
axis, and the marker-vertex correspondences estimated in
Sec. 3.2. The function takes as inputs the articulated object
pose, Ω, and outputs a posed 3D mesh, O(Ω) ∈ IRV×3 ,
where V denotes the object’s number of vertices. The ob-
ject pose, Ω ∈ IR7, consists of the 1D rotation (radians) for
articulation, ω ∈ IR, and the 6D object rigid pose, i.e., its
rotation, Ro ∈ IR3, and translation, To ∈ IR3.
Baselines: We introduce ArcticNet to estimate the poses of
the two hands and the articulated object from RGB images.



Figure 5. Qualitative results of ArcticNet-LSTM (a) and InterField-LSTM (b). Best viewed in color and zoomed in. See SupMat for
results of ArcticNet-SF and InterField-SF.

Contact and Relative Position Motion Hand Object
Splits Method CDevho [mm] ↓ MRRPErl/ro [mm] ↓ MDevho [mm] ↓ ACCh/o [m/s2] ↓ MPJPEh [mm] ↓ AAE [◦] ↓ Success Rate [%] ↑

Allo. Val ArcticNet-SF 41.4 50.1/37.6 10.4 6.6/8.8 23.0 5.9 71.8
ArcticNet-LSTM 38.8 47.1/36.8 8.9 5.6/6.9 22.9 5.8 74.9

Allo. Test ArcticNet-SF 41.6 52.4/37.5 10.4 5.7/7.6 21.5 5.4 71.4
ArcticNet-LSTM 38.9 49.2/37.7 9.3 5.0/6.1 21.5 5.2 73.5

Ego. Val ArcticNet-SF 44.1 33.9/36.8 11.8 6.3/11.3 22.9 8.0 59.0
ArcticNet-LSTM 44.5 39.3/39.0 8.1 4.3/7.2 23.8 8.0 59.1

Ego. Test ArcticNet-SF 44.7 28.3/36.2 11.8 5.0/9.1 19.2 6.4 53.9
ArcticNet-LSTM 43.3 31.8/35.0 8.6 3.5/5.7 20.0 6.6 53.5

Table 2. Comparison of two reconstruction baselines. Contact and relative position metrics measure hand-object contact and relative
root position prediction. Motion metrics reflect motions with temporally-consistent contact and smoothness. Hand and object metrics show
root-relative reconstruction error. See Sec. 4 for metric details. We use l, r, o to denote the left, the right hand, and the object. To simplify
the results, we average left and right hand metrics into one hand (denoted by h). For example, CDevho is the contact deviation between a
hand and the object averaged over the two hands; MRRPErl/ro denotes MRRPEr→l and MRRPEr→o between the slash.

We benchmark two versions of ArcticNet: a single-frame
model (ArcticNet-SF), and a model with a recurrent archi-
tecture (ArcticNet-LSTM). The LSTM baseline is used to
allow a joint reasoning of hand and articulated object mo-
tions. Figure 4 summarizes the architecture of ArcticNet-
SF. Inspired by Hasson et al. [24, 25], we use an encoder-
decoder architecture. In particular, the CNN encoder takes
in the input image and produces image features x. The fea-
tures are used by the hand decoders to estimate the param-
eters for the left and right hands, Θl and Θr, as well as
the translations for the two hands, Tl and Tr. Similarly,
the object decoder predicts the articulated object pose, Ω.
We use axis-angle for rotation and use the weak perspective
camera model to estimate the translations [5,30,35,54,83].
The ArcticNet-LSTM model has the same architecture as
ArcticNet-SF, except that it has an LSTM network to ag-
gregate image features from multiple frames before pass-
ing them to the regression heads. We train the models with
ground-truth 3D keypoints, 2D projected keypoints, and the
parameters of the hand and the object models. We show
details of the model and the training procedure in SupMat.

Results: Figure 5a visualizes the predictions of one of
our baselines, ArcticNet-LSTM with [32]. To see qual-
itative results of ArcticNet-SF, we refer to the SupMat.
Table 2 shows the quantitative evaluation of the two base-
line models on ARCTIC. The results show that, over-
all, the ArcticNet-LSTM model has temporally more con-

sistent contact (CDev), and motion (MDev) between the
hands and objects. Further, it has smoother motion (ACC).
This demonstrates that temporal modelling is important for
spatio-temporally consistent hand-object motion and con-
tact. See Sec. 4 for metric details.

5.2. Interaction field estimation

Existing contact detection methods mainly focus on bi-
nary contact estimation [21, 77]. In two-handed dexterous
interactions, hands can be near the object, but not always in
contact. We define a general task of interaction field estima-
tion to capture the relative spatial relations between hands
and the object even when not in contact.

Problem formulation: We define an interaction field
F a→b ∈ IRVa as the distance to the closest vertex on the
mesh Mb for all vertices in mesh Ma where Va (or Vb) is
the number of vertices in mesh Ma (or Mb). Formally,

F a→b
i = min 1⩽j⩽Vb

||va
i − vb

j ||2, 1 ⩽ i ⩽ Va (7)

where vm
k ∈ IR3 represents the k-th vertex of mesh Mm.

We define our task to estimate the interaction fields F l→o,
F r→o, F o→l, and F o→r for each image. In other words,
for each vertex of each hand we aim to infer the closest
distance to the object and vice-versa.



Splits Method Average Distance Error [mm]↓ ACC [m/s2]↓
InterField-SF 9.6/9.9 3.0/2.9Allo. Val InterField-LSTM 9.0/8.9 2.1/2.0
InterField-SF 9.0/10.0 2.7/2.7Allo. Test InterField-LSTM 8.7/9.1 1.9/1.9
InterField-SF 8.8/9.2 2.4/2.3Ego. Val InterField-LSTM 8.4/8.9 2.1/2.0
InterField-SF 8.2/9.2 2.1/2.0Ego. Test InterField-LSTM 8.0/9.1 1.8/1.8

Table 3. Comparison of two field estimation baselines. To sim-
plify the evaluation, we average metrics for the two hands into one.
The slashes denote the average distance error and the acceleration
error for hand-to-object/object-to-hand.

Figure 6. InterField-SF architecture. We concatenate image fea-
tures x to each subsampled hand-object vertex in canonical pose.
The concatenated vectors are passed through a PointNet and then
regressed to distance values. The interaction field is visualized as
a heatmap for each entity (bright: closest vertex is near).

Baselines: We present InterField to estimate the interac-
tion field from RGB images. We benchmark two versions
of InterField: a single-frame (InterField-SF) and a tempo-
ral baseline (InterField-LSTM). The temporal model lets
us evaluate the benefits of temporal information. Figure 6
outlines the framework of InterField-SF. Suppose that we
estimate the field F̂ l→o. We first extract image features
x ∈ IRd via a CNN backbone. Next, we concatenate x
to each sub-sampled vertex of the left hand (l) in its canon-
ical pose to obtain pi = [x;vi] ∈ IRd+3 for all 1 ⩽ i ⩽ V̄l

where V̄l denotes the number of subsampled vertices. All
points pi are fed to a PointNet [50] followed by a regres-
sion head that estimates the distance. The predicted dis-
tances are upsampled to the full mesh. For efficiency, we
use subsampled vertices for the PointNet and upsample for
regression. The remaining interaction fields are estimated
via the same network with a shared CNN and PointNet but
different heads. InterField-LSTM follows the same formu-
lation except it has an LSTM to aggregate image features
in a temporal window to jointly reason about hand-object
motion. See more training and baseline details in SupMat.
Results: Figure 5b shows qualitative samples of InterField-
LSTM. The predicted values are visualized as heatmaps
over the meshes of the respective hands or objects. A “hot-
ter” region denotes closer distances. Note that the ground-
truth meshes are only used for visualization; they are not
network inputs. We find that the predicted fields correlate
well with the ground truth. Table 3 shows the performance
of our baselines. The results show that modeling the hand-
object interaction field over time yields more accurate re-

sults (see distance error), and smoother predictions (ACC).

6. Conclusions

We introduce ARCTIC, the first dataset with two hands
dexterously manipulating articulated objects that includes
high-quality 3D ground-truth for hands, and objects to-
gether with synchronized video. ARCTIC has a total of
2.1M RGB images from 8 static views and 1 egocentric
view of 10 subjects interacting with 11 articulated objects.
We present two tasks on ARCTIC. First is consistent motion
reconstruction. Given a video, we reconstruct two hands
and an articulated object in 3D for every frame, such that
their motions are spatio-temporally consistent. The second
task is interaction field estimation, where we estimate dense
relative hand-object distances from images in a video. We
present two baselines ArcticNet and InterField for the two
tasks respectively, and evaluate them on ARCTIC to lay the
foundation for future work.
Future directions: ARCTIC can enable a range of tasks
related to hand manipulation with object articulation. First,
methods for generating hand-object interaction focus on
generating grasps of rigid objects [11, 31], but less work
has been done on generating dexterous bimanual manip-
ulation motion with objects [10, 81] and prior work does
not generate interaction with articulated objects (e.g., “cut-
ting with scissors”). ARCTIC can enable these new gen-
eration tasks, and extend them to the full-body [64] with
our SMPL-X ground-truth. Second, we introduce tasks of
consistent motion reconstruction and interaction field esti-
mation. Future work could leverage the interaction field
representation for pose estimation to improve hand-object
contact in reconstruction. Finally, articulated object pose
estimators [39] from depth images do not consider humans
in the scene. The rendered depth images in ARCTIC can be
used to benchmark such methods in more realistic settings.
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Appendix - Supplementary Material

1. Dataset Details
Objects in ARCTIC: Figure 1 shows all 11 articulated ob-
jects in our dataset. Objects in ARCTIC consists of two
rigid parts that rotate about an axis. Each dash line in the
figure shows the articulation axis.
Marker sets: Figure 2 shows marker sets for an object,
the full human body, two hands, and the egocentric camera
along with the marker size. Markers in this visualization are
shown to scale. The marker locations for all objects and all
subjects can be found in the data release.
Dataset statistics: Table 1 shows the number of images
and the number of sequences per subject for our dataset.
The average sequence length is 698 frames (view-agnostic),
corresponding to 23.3 seconds. In total, we have 2.1M im-
ages and there are more than 200k images for most subjects.
Table 2 shows the number of images per object. All objects
have more than 170k images. To encourage different modes
of interaction, we capture different intents for each object:
“use” and “grasp”. Although both are for dexterous manip-
ulation, in the “use” sequences, the subjects are allowed to
articulate the object but not in the “grasp”. Since we focus
on studying articulation, we capture more “use” sequences.
Protocol splits: Table 3 shows the number of images and
subjects in the allocentric and the egocentric settings. Both
settings use the same subject split – 8 subjects for training, 1
for validation and 1 for testing. The allocentric setting uses
images from the 8 allocentric static views for training, val-
idation, and testing. The egocentric setting, in the training
split, we allow models to use images from all 9 views for
additional supervision; During inference, however, models
are evaluated with only egocentric images.
Depth images: Since we perform full-body capture, we can
render depth images with full-body interaction. Since most
existing articulated object datasets contain neither two-
hands nor human bodies [41, 43, 76], and having a human
in the scene is a realistic setting, we believe that ARCTIC
brings additional challenges of heavy occlusion and dy-
namic manipulation to the depth community. Figure 3
shows examples of the depth images and the corresponding
RGB images. The depth can be rendered with any synthetic
sensor noise model (e.g., Kinect, right).

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Total
# Images 209k 224k 220k 212k 227k 228k 191k 280k 208k 135k 2.1M
# Seqs 34 37 38 31 34 36 29 42 37 21 339

Table 1. Number of images and sequences for each subject.
The average sequence length is 698 frames (view-agnostic), cor-
responding to 23.3 seconds.

2. Data Capture Details
2.1. MoCap System with 54 Cameras

Figure 4 illustrates our MoCap system. When capturing
quality hand-object interaction data, the key is to eliminate
occlusion in hand self-occlusion, hand-hand occlusion, and
hand-object occlusion settings. To minimize these sources
of occlusion, we use 54 high-resolution MoCap cameras
during our capture. The camera positions and orientations
are shown in Fig. 4a in a side view and a bird-eye view. We
also show the markers tracked by our system in Fig. 4b. The
system tracks markers on the egocentric camera, the human
subject (full body with hands), the articulated object (note-
book in this case), and props such as the table.

2.2. Creating Personalized Template

To create a personalized full body-and-hand template
mesh for each subject, we obtain 3D scans of the subjects in
varying poses using a 3dMD scanner [67]. We then register
the SMPL-X model to the scans to obtain aligned meshes.
The registered SMPL-X meshes are unposed to a canoni-
cal T-Pose. We perform a SMPL-X model-based fitting to
the unposed meshes using vertex-to-vertex distances with
the SMPL-X vertex correspondences. Fitting with multiple
T-Posed meshes allows us to filter out potential noise, and
to capture the occluded regions of the body and hands, re-
sulting in a reliable personalized SMPL-X template for each
subject.

2.3. Estimating Rotation Axis and Articulated Pose

To solve for the rotation axis of each articulated object,
we attach markers on each rigid part of each object and cap-
ture a calibration MoCap sequence by articulating its two
parts. Since the two parts rotate about an axis, the trajec-
tory of each marker follows a circle on a 2D plane. We
solve for the center of each circle using least-squares, and
fit a 3D line through the centers to obtain an initial rotation
axis estimate. We then refine the rotation axis estimate by
minimizing a cost function.

Formally, let Xi
t ∈ IR3 denote the 3D position of a

marker i at time step t placed on the “top” part of the ob-
ject (e.g., the lid of the ketchup bottle); Y j

t ∈ IR3 denotes a
marker j on the “bottom” part of the object (e.g., the main

Figure 1. ARCTIC objects. Each line shows the articulation axis.



Objects Notebook Box Espresso machine Waffle iron Laptop Phone Capsule machine Mixer Ketchup bottle Scissors Microwave Total
Use 163k 152k 141k 166k 171k 159k 159k 156k 138k 128k 144k 1.7M

Grasp 27k 36k 46k 41k 40k 49k 37k 47k 51k 44k 43k 0.4M
Total 190k 187k 187k 207k 211k 208k 196k 202k 189k 172k 186k 2.1M

Table 2. Number of images for each object in ARCTIC. In ARCTIC, we focus on studying hand interaction with object articulation.
Therefore, we capture more “use” sequences in which subjects can articulate the object. To encourage different modes of interaction, we
also ask subjects to “grasp” the objects without articulating the objects. Since we focus on object articulation, we capture more data for
“use” than in “grasp”.

Figure 2. Markers for motion capture (MoCap). We put 1.5mm
radius markers on objects, hands and the egocentric camera. For
the body, we use 4.5mm radius markers. The markers are shown
here to scale. Best viewed in color and zoomed-in.

Splits # Train Images # Val Images # Test Images
allo 1.5M 202k 195k
ego 1.7M 25k 24k

Table 3. Number of images for each protocol.

Figure 3. Rendered depth images of human-object interaction.
(a) Rendered depth images of our 3D data, and the corresponding
RGB images, and (b) depth images with synthetic kinect noise.
Best viewed zoomed-in. For better depth-map visualization we do
not render the floor here.

body of the ketchup bottle) at time t. We pick a frame t0
corresponding to a pre-defined rest pose for each object (for
example, a frame in which the lid of the ketchup bottle is
closed). We then transform the MoCap sequence {Xi

t}i,t
and {Y j

t }j,t into a canonical sequence {X̄i
t}i,t and {Ȳ j

t }j,t
via a rigid transformation (R, T ) such that Ȳ j

t = Y j
t0 for

all t and j. After the canonicalization, the markers on the
bottom part of the object are stationary across the entire se-
quence, and the top markers rotate around an axis. Fur-
ther, the trajectory of each marker is a circle on a 2D plane.
We fit a circle to the trajectory {X̄i

t}t=1,··· ,N of an arbi-
trary marker i using least-squares, and convert the 2D cir-
cle center to the 3D space (xi, yi, zi). We then fit a 3D
line (v, v0) to the center of each circle {(xi, yi, zi)}i in 3D,
where v ∈ IR3 is a unit directional vector for the line and

v0 ∈ IR3 is an arbitrary anchor point that the line crosses.
Since fitting a 3D line to 3D centers can be imprecise, we
refine the rotation axis further by minimizing the following
cost function

(v∗, v∗0 , ω
∗
t=1,··· ,N ) = argmin

v,v0,ωt=1,··· ,N

∑
i ||X̄i

t − f(X̄i
t0 |v, v0, ωt)||22

(8)
where N is the number of frames in a sequence; ω∗

t=1,··· ,N
are the articulation angles in radians for all the frames rel-
ative to the rest pose. The quantities v∗, v∗0 are the refined
rotation axis for the object. The function f(X̄i

t0 |v, v0, ωt)
rotates {X̄i

t} about the estimated axis (v∗, v∗0) by ωt, the
amount of articulation. This ensures that the estimated ro-
tation axis is consistent with the marker trajectory in the
MoCap data.

To define the articulated object pose, we need to estimate
the 1D articulation angle, and its 6D rigid pose. To compute
the former, after the rotation axis (v∗, v∗0) is estimated, for
an actual MoCap sequence, the articulation angles are ob-
tained by performing a 2D projection of the 3D marker posi-
tions along the rotation axis. Since the 2D projection lies on
a circle, the articulation angle can be estimated arithmeti-
cally. The articulation angle is measured relative to each
object’s rest pose defined in t0 during the rotation axis esti-
mation step. We take the median of the articulation angles
estimated from all markers at a time step as our ground-
truth articulation angle. Finally, to define the articulated
object pose, we also need the 6D object pose for its orien-
tation and translation. To solve for the 6D pose (Rt, Tt) for
a frame t, we compute the rigid transformation from Ȳt0 to
Yt. In other words, we compute the 6D pose using the base
marker according to its correspondence from the canonical
space to the MoCap space.

2.4. Computing Hand-Object Binary Contact

We consider the two hands and the two parts of each ar-
ticulated object as four watertight meshes for computing
ground-truth binary contact labels. Given one mesh from
the hands and one mesh from the object parts, we follow
GRAB [65] to compute vertex-level contact. The main idea
in GRAB is to label vertices on a mesh as in contact with
another mesh based on two cases: “contact under-shooting”
and “contact over-shooting”. When vertices on a mesh are



Figure 4. Our capture system with 54 high-resolution MoCap cameras. (a) MoCap system in a side view and a bird-eye view,
illustrating the 54 MoCap cameras used to eliminate occlusion during the capture. (b) Observed markers for a captured frame, showing
markers tracking the full human body with hands, the object (notebook in this case), the egocentric camera, and props such as the table.
Best viewed in color and zoomed in.

Hand Branch
Nr. Module Details
1 pool AvgPool2d(output size=1)
2 cam init Linear(in dim=2048, out dim=512, bias=True)
3 cam init ReLU()
4 cam init Linear(in dim=512, out dim=512, bias=True)
5 cam init ReLU()
6 cam init Linear(in dim=512, out dim=3, bias=True)
7 refine.fwd Concat([“feat”, “hand pose”, “cam”, “shape”])
8 refine.fwd Linear(in dim=2157, out dim=1024, bias=True)
9 refine.fwd ReLU()

10 refine.fwd Dropout(p=0.5)
11 refine.fwd Linear(in dim=1024, out dim=1024, bias=True)
12 refine.fwd ReLU()
13 refine.fwd Dropout(p=0.5)
14 refine.decode.pose 6d Linear(in dim=1024, out dim=96, bias=True)
15 refine.decode.shape Linear(in dim=1024, out dim=10, bias=True)
16 refine.decode.cam Linear(in dim=1024, out dim=3, bias=True)

Object Branch
1 pool AvgPool2d(output size=1)
2 cam init Linear(in dim=2048, out dim=512, bias=True)
3 cam init ReLU()
4 cam init Linear(in dim=512, out dim=512, bias=True)
5 cam init ReLU()
6 cam init Linear(in dim=512, out dim=3, bias=True)
7 refine.fwd Concat([“feat”, “rot”, “cam”, “arti”])
8 refine.fwd Linear(in dim=2055, out dim=1024, bias=True)
9 refine.fwd ReLU()

10 refine.fwd Dropout(p=0.5)
11 refine.fwd Linear(in dim=1024, out dim=1024, bias=True)
12 refine.fwd ReLU()
13 refine.fwd Dropout(p=0.5)
14 refine.decode.rot Linear(in dim=1024, out dim=3, bias=True)
15 refine.decode.cam Linear(in dim=1024, out dim=3, bias=True)
16 refine.decode.arti Linear(in dim=1024, out dim=1, bias=True)

Table 4. Details of the decoder in ArcticNet-SF.

not inside another mesh, it is considered “under-shooting”,
and geometric proximity is used to label contact. When
there is interpenetration between two meshes, for example,
the thumb goes through a thin structure, the vertices of the
thumb that “over-shoot” the thin structure are labeled as in
contact as well as the vertices that are inside the structure.
For more details, we refer readers to [65].

3. Model Details and Results
General implementation details: For all experiments,
we use a ResNet-50 [63] backbone pre-trained on Ima-
geNet [13]. The models are trained with the Adam opti-
mizer [33] using a learning rate of 1e−5. For visibility, we
crop each image around a square region centered around the
object and resize the image to 224 × 224. Data augmenta-
tion is applied to the input image: rotation (±30◦), scaling
(±25%), and color jittering (±40%).

3.1. ArcticNet

ArcticNet-SF Architecture: We show the details of
ArcticNet-SF in Table 4. ArcticNet-SF uses an encoder-
decoder architecture. Given an input image, we use aver-
age pooling to obtain a single image feature vector with
dimension 2048 from the backbone. The image feature
vector is used to predict the initial camera parameters (in
“cam init”). Following [30], we use an iterative refinement
scheme to predict parameters of the hands and the objects.
First, we initialize all parameters to zero except for the cam-
era parameters, which we initialize with the prediction in
“cam init”. For the hand branch, we concatenate the im-
age feature vector, the initial hand poses, the hand shape
vector into a single vector, and the predicted camera pa-
rameters for refinement (Line 7-16). Within the refinement
step, we first predict a latent vector using an MLP (Line
7-13). The latent vector is then being decoded via differ-
ent heads to the residuals for MANO joint angles, shape
and camera parameters (Line 14-16). The decoded resid-
uals are added to the current estimates of the parameters
respectively and will be used as inputs for the next refine-
ment step (Line 7-16 again). We have two iterations for
the refinement. The object branch has a similar refinement
scheme, but instead it predicts the object rotation, camera
parameters, and object articulation. Following [35, 36], we



use the 6D rotation representation in [85] for MANO joint
angles. Following [5, 30, 35, 54, 83], for the predicted weak
perspective camera parameters, we use a fixed focal length
of 1000.0 and convert them to translations for each entity in
the scene.
ArcticNet-LSTM Architecture: The LSTM model takes
in a moving window of images and estimates 3D meshes for
each frame. We use the same structure as ArcticNet-SF ex-
cept that the image features within each window are passed
through an LSTM network before being decoded. We use a
bidirectional LSTM with two hidden layers, hidden dimen-
sion of 1024, and a window size of 11 based on validation.
Training losses: For each frame, our loss L is defined as
the sum of the left hand, right hand, object, and interaction
losses: L = Ll + Lr + Lo + Lint. In particular, the hand
losses are defined as

Lh = λh
3DLh

3D + λh
2DLh

2D + λh
ΘLh

Θ + λh
TLh

T , (9)

where h = {l, r} denotes the handedness. We fully super-
vise the 3D joints (after subtracting the roots), the 2D re-
projection of the predicted 3D joints, the MANO pose and
shape parameters and the weak-perspective camera param-
eters. Similarly, we pre-define 3D landmarks for objects
using farthest point sampling [15, 16] on the object mesh.
Using these landmarks, we formulate the object losses as

Lo = λo
3DLo

3D+λo
2DLo

2D+λωLω+λRLR+λo
TLo

T , (10)

where Lω , LR and Lo
T supervise the articulation angle in ra-

dians, the global orientation and the weak perspective cam-
era parameters. For the interaction loss Lint, we use the
contact deviation (CDev) metric (see main paper) as a loss
term to improve hand-object contact. We apply this loss be-
tween the left-hand/object, and right-hand/object. The loss
Lint is a sum of the two. All losses above use the MSE cri-
terion. All λ variables are hyper-parameters and are set em-
pirically based on validation performance. In particular, we
set all λs to 1.0 except λ∗

3D = 5.0, λh
2D = 5.0, λh

Θ = 10.0,
λh
β = 0.001 where ∗ denote a hand or an object.

Training details: We train with a batch size of 64. For
the allocentric setting, we train single-frame models for
20 epochs. Since training temporal model is computation
intensive, following VIBE [34], we dump image features
of pre-trained single-frame models to disk then train the
LSTM models directly on the image features for 10 epochs.
For the egocentric setting, since a model has access to both
allocentric and egocentric images during training, to speed
up training, we finetune pre-trained allocentric models on
egocentric training images (1 camera) for 50 epochs.
Camera model: Following previous work on body and
hand surface reconstruction [5, 30, 35, 36, 54, 83], to esti-
mate the translation of hands and objects (Tl, Tr, To), we
predict weak-perspective camera parameters (s, tx, ty) for

each entity in the scene. The camera parameters consist of
the scale s ∈ IR and translation (tx, ty) ∈ IR2 in pixel space
and the translation can be recovered from (s, tx, ty) [35,36]
via:

T = (tx, ty,
2f

ws
) ∈ IR3. (11)

The terms w and f are the patch size and the focal length.
We do this for each (Tl, Tr, To).
Qualitative Results: Figure 5 shows the predictions of
ArcticNet-SF and ArcticNet-LSTM on the test set. As
shown in the quantitative results in the main manuscript,
the ArcticNet-LSTM model has lower errors overall for its
prediction and it has better contact. This is consistent with
the observations in the qualitative examples here. We hy-
pothesize that this is because the LSTM allows the network
to jointly reason between the motions of hands and objects.

3.2. InterField

InterField-SF Architecture: Table 5 details our InterField
model. As an example, we illustrate how the right hand in-
teraction field is predicted. The left hand, and the object
are predicted in a similar way. In particular, from an input
image, we obtain a 2048-dimensional image feature vec-
tor from the image backbone. The vector is passed through
an MLP and is projected to lower dimension for computa-
tional efficiency (Line 1-4). We use subsampled vertices of
the hand, and concatenate the 3D location of each vertex
of the subsampled hand in the canonical pose with the 512-
dimensional image feature vector, resulting a point cloud
with 515 dimensions. The point cloud is passed through a
PointNet backbone to obtain a latent point cloud with 512
dimensions (Line 5-11). Within the PointNet backbone, the
515-dimensional input point cloud is passed through a se-
quence of layers to produce lower level point features (Line
5-6). The point features are further processed through Line
7-11. We then concatenate the point cloud from the shallow
layers (output of Line 6) and the deeper layers (output of
Line 11) along the feature dimension, resulting in a point
cloud whose individual points are in 1024-dimensional. A
regressor maps each point (1024-dimensional) to a single
scalar for distance prediction (Line 12-18). Finally, we
upsample the subsampled distances to the full hand mesh
(Line 19). We predict the interaction field of the left hand
and the object in the same way. All entities shared the same
image and PointNet backbones.
InterField-LSTM Architecture: The LSTM model takes
in images from a window and estimates the interaction field
for each frame. In particular, we use the same architec-
ture as in ArcticNet-SF except that we pass the image fea-
tures in a window to an LSTM network before regressing
the distances. We use a bidirectional LSTM with two hid-
den layers, hidden dimension of 1024 and a window size of
11 based on validation performance.



Figure 5. Qualitative results of ArcticNet-SF and ArcticNet-LSTM. Best viewed in color and zoomed in.

Origin

(a) Predicted and ground-truth
roots of entities a and b

(b) MRRPE for entities a and b

Figure 6. An illustration of the MRRPEa→b metric. (a) The
predicted roots of entities a and b are denoted by Ĵa

0 and Ĵb
0, and

Ja
0 and Jb

0 are the corresponding ground-truth. (b) Subtract a by
b; MRRPEa→b ∈ IR is indicated by the dash line.

Nr. Module Details
1 img feat.down Linear(in dim=2048, out dim=512, bias=True)
2 img feat.down ReLU()
3 img feat.down Linear(in dim=512, out dim=512, bias=True)
4 img feat.down ReLU()
5 pointnet.shadow Linear(in dim=515, out dim=512, bias=True)
6 pointnet.shadow BatchNorm1d(512, affine=True)
7 pointnet.deep Linear(in dim=515, out dim=512, bias=True)
8 pointnet.deep BatchNorm1d(512, affine=True)
9 pointnet.deep ReLU()

10 pointnet.deep Linear(in dim=515, out dim=512, bias=True)
11 pointnet.deep BatchNorm1d(512, affine=True)
12 regressor Linear(in dim=1024, out dim=512, bias=True)
13 regressor BatchNorm1d(512, affine=True)
14 regressor ReLU()
15 regressor Linear(in dim=512, out dim=128, bias=True)
16 regressor BatchNorm1d(128, affine=True)
17 regressor ReLU()
18 regressor Linear(in dim=128, out dim=1, bias=True)
19 upsample Linear(in dim=195, out dim=778, bias=True)

Table 5. Details of InterField-SF architecture.

Training details: For each frame, the network outputs are
F̂ l→o, F̂ r→o, F̂ o→l, and F̂ o→r. To supervise training, we
extract the ground-truth interaction fields for each frame
from ARCTIC and formulate an L1 loss L = LF (l, o) +
LF (r, o)+LF (o, l)+LF (o, r) where LF (a, b) = ||F a→b−

F̂ a→b||1 for entities a and b. For tractability and focus
on close interaction, we threshold the interaction field dis-
tances at 10cm for training and evaluation.

We train with a batch size of 64 for single-frame mod-
els and 32 for LSTM models. For the allocentric setting,
we train single-frame models for 20 epochs. Since training
temporal model has high computational requirements, fol-
lowing [34], we dump image features of pre-trained single-
frame networks to disk and train the LSTM models on the
image features for 6 epochs. For the egocentric setting, a
model has access to both allocentric and egocentric images
in the training set. To speed up training, we finetune pre-
trained allocentric models on egocentric images (1 camera)
for 100 epochs and 50 epochs for single-frame and LSTM
models respectively.
Qualitative Results: Figure 9 shows the predictions of the
single-frame model, and the corresponding ground-truth.
We use ground-truth hand and object poses for visualization
purposes. They are not the inputs of our network. Here we
focus on the colors on the meshes; Brighter colors represent
closer distances in the interaction fields. The figure shows
the feasibility of the task because the predictions correlate
well with the ground-truth.

4. Metrics and Experiments
4.1. Metric Details

Acceleration Error (ACC): Following [34], we report ac-
celeration error in m/s2 to measure the smoothness of con-
sistent motion reconstruction, and interaction field estima-
tion. Formally, suppose ĥt

i ∈ IRd is the predicted vertex
(or distance value) i at frame t of a hand; ht

i is the cor-
responding ground-truth. We compute the corresponding
acceleration vector ût

i ∈ IRd of ĥt
i. Similarly, we compute

the acceleration vector ut
i for the ground-truth. The accel-

eration error for a hand is computed as:

1

TVh

T∑
t=1

Vh∑
i=1

∥∥ût
i − ut

i

∥∥ (12)

where Vh, T , d are the number of hand vertices, the se-
quence length, and the number of dimension for the predic-



Contact and Relative Position Motion Hand Object
Object CDevho [mm] ↓ MRRPErl/ro [mm] ↓ MDevho [mm] ↓ ACCh/o [m/s2] ↓ MPJPEh [mm] ↓ AAE [◦] ↓ Success Rate [%] ↑

Notebook 37.4 47.7/39.8 9.9 5.0/6.5 20.8 3.3 80.4
Box 47.5 66.3/49.2 10.6 5.5/6.7 24.5 1.3 88.2

Espresso machine 48.9 52.5/46.2 9.5 4.8/5.0 24.5 11.0 81.0
Waffle iron 41.8 43.3/39.0 14.6 5.6/7.9 21.3 3.1 74.0

Laptop 42.6 54.7/40.5 12.8 5.2/7.2 21.7 1.7 84.4
Phone 29.5 42.2/31.1 7.5 4.6/7.2 18.8 3.9 62.3

Capsule Machine 30.5 37.6/30.9 7.8 4.7/4.4 19.2 6.9 69.3
Mixer 34.5 41.2/33.9 8.6 4.8/5.3 21.3 2.6 78.3

Ketchup bottle 33.0 45.6/35.0 10.8 5.4/7.4 20.7 7.0 59.2
Scissors 25.6 39.7/22.2 5.8 4.1/5.0 17.7 10.5 50.1

Microwave 60.8 62.6/41.9 9.3 5.2/5.2 26.0 7.3 74.3

Table 6. Detailed breakdown on test set evaluation per object. Here we provide the detailed breakdown of the test set evaluation
according to each object. For each metric, we use red to denote the object with the highest error; we use blue to denote the lowest error.

Contact and Relative Position Motion Hand Object
Size CDevho MRRPErl/ro MDevho ACCh/o MPJPEh AAE Success R.

5 39.9 48.0/37.4 9.3 6.2/8.2 23.3 6.1 72.7
11 39.0 47.0/36.6 8.8 6.1/7.7 22.8 5.8 74.6
15 39.7 47.8/36.8 9.0 6.2/7.6 22.9 5.8 74.4

Table 7. Effects of window size on ArcticNet-LSTM. Here we
ablate the effect of window size on our model on the validation set.

Contact and Relative Position Motion Hand Object
CDev loss CDevho MRRPErl/ro MDevho ACCh/o MPJPEh AAE Success R.

✗ 49.0 53.1/45.6 11.9 7.3/10.1 23.0 6.1 71.3
✓ 41.9 50.1/37.6 10.4 7.3/9.8 23.1 5.9 71.8

Table 8. Effects of contact deviation (CDev) as a training loss.
Here we ablate the effect of the contact deviation metric as a loss
on ArcticNet-SF on the validation set.

tion of a task. To compute the acceleration, we use centered
difference:

ut
i =

ht−1
i − 2ht

i + ht+1
i

w2
(13)

where w = 1/30s is the stencil width of 30-FPS videos.
Note that previous methods [34, 87] computing the acceler-
ation errors did not divide the error by w2, leading to signif-
icantly smaller errors. The prediction dimension (d) for the
reconstruction task, and the interaction field task are 3 and
1 respectively. For the former, we use root-relative vertices.
We compute the acceleration of the object in the same way.
Average Articulation Error (AAE): Suppose ωt ∈ IR and
ω̂t ∈ IR are the predicted and ground-truth object articula-
tion at frame t, the average articulation error is defined as

1

T

T∑
t=1

|ωt − ω̂t| (14)

where T is the number of frames.
Mean Relative-Root Position Error (MRRPE): Follow-
ing [17,44], to measure the relative root translation between
two entities a and b in the scene (a hand or an object),

MRRPEa→b =
∥∥∥(Ja

0 − Jb
0

)
−
(
Ĵa
0 − Ĵb

0

)∥∥∥
2

, (15)

where a ∈ {l, r, o} and b ∈ {l, r, o} and l, r, o denote the
left hand, right hand, and the object, J0 ∈ IR3 is the ground-
truth root joint location and Ĵ0 the predicted one. Figure 6
shows a visualization of the metric. Suppose we want to
compute MRRPEa→b, and Ĵa

0 and Ĵb
0 denote the predicted

roots for entities a and b and the notations without “hat” are
the ground-truth. The MRRPE value is the distance indi-
cated in the dash line.

4.2. Ablation and Analysis

Detailed analysis on test set: To see a performance
breakdown per object, Table 6 shows the evaluation of the
ArcticNet-LSTM model evaluated on the test set of the allo-
centric split. We use red to denote with the worst value for
each metric and blue to denote the best value. We can see
that the microwave is the hardest object in terms of hand re-
construction (see MPJPE) and contact (see CDevho). This
is because when opening the microwave door, the fingers
are often heavily occluded. In contrast, the scissors has the
lowest hand reconstruction error because it is a small object.
In terms of estimating the articulation angle, the box, how-
ever, has the smallest error (see AAE). We hypothesize that
the articulation angle is easy to observe because the box is
the largest object. In contrast, the espresso machine has a
small handle, which can be occluded heavily, so it has the
highest AAE error. Finally, the scissors is the hardest ob-
ject to reconstruct its pose (see success rate) because it is a
small object and in some view its dark texture is similar to
the background color.
Window size for ArcticNet-LSTM: Table 7 shows the ef-
fect of window size on ArcticNet-LSTM in the validation
set. With more frames in a window, overall the model has
better performance. To balance performance and efficiency,
we use a window size of 11 for our model.
Contact deviation (CDev) as training loss: Table 8 shows
the effect of the contact deviation metric as a training loss



Figure 7. Changes in hand poses after first contact.

Figure 8. Interaction field estimation on HO3D

to encourage hand-object contact using the allocentric pro-
tocol. The results are evaluated on the validation set. In this
ablation, we train the ArcticNet-SF by turning on and off
the contact deviation loss. The loss is applied between left-
hand/object, and right-hand/object as described in Sec. 3.
Results show that the CDev loss improves hand-object con-
tact indicated by the CDevho metric.
Number of views for ArcticNet-SF: Since ARCTIC has
only 1 egocentric view, we ablate the effect of the num-
ber of allocentric views. When trained with 2, 4, 6, 8
views, randomly selected, MPJPEs for hands are 49.0mm,
35.0mm, 25.8mm, 23.4mm; the object success rates are
40.8%, 57.0%, 62.1%, 68.6% on the validation set.
Quantifying dexterous motion: Existing datasets do not
show significant changes in hand pose. In particular,
poses in ContactPose are fixed relative to the object while
DexYCB poses do not change much once contact is estab-
lished (see Fig. 7). The figure plots the relative change in
3D joints across consecutive frames, without global transla-
tion and rotation. The vertical dashed line indicates the first
contact. Fig. 2 (main paper) shows that ARCTIC has more
diversity in hand poses and contact patterns, resulting from
dexterous manipulation, compared to other datasets.
Interaction field estimation on HO3D: Our proposed task
can be applied to existing hand datasets with rigid objects.
To show this, we trained InterField-SF on HO3D. Fig. 8
shows qualitative results. However, we note that exist-
ing hand-object datasets have similar hand poses within
each sequence (thus, similar contact) and fewer training im-

ages, which are easy to overfit to (see Fig. 8 failure case);
ARCTIC is large-scale and it is more challenging due to
more dynamic interaction (changing poses and contact) and
thus will help in fostering future research.
Improve hand and rigid objects with ARCTIC: We pre-
train ArcticNet on ARCTIC, finetune on HO3D (hand +
rigid objects). This model is compared to a model trained
only on HO3D. Following the HO3D protocol, pre-training
on ARCTIC improves MPJPE (scale-translation aligned)
errors by 9.2%. For the object, the vertex-to-vertex error
(root aligned) improves by 7.1%. This shows that articu-
lated hand-object data benefits hand and rigid object recon-
struction.

5. Visualizing ARCTIC
To visualize the our 3D annotation in the dataset, Fig. 10

shows random samples of the 3D meshes of hands and ob-
jects overlaid on the images in our ARCTIC dataset. See
the video on our project page for our rendered sequences.

6. Discussions and Limitations
We introduce ARCTIC, the first dataset for two hands

dexterously manipulating articulated objects and baselines
for the task of consistent motion reconstruction, and inter-
action field estimation. Being a first step, our work is not
without limitations.
Known object models in ArcticNet: Similar to existing
methods [14, 24, 25, 77], one limitation of our baselines is
that they assume known object models. We view articulated
3D shape estimation of unknown objects as an orthogonal
problem on which the field is making progress. Now that
we have showed the feasibility of inferring hand-object in-
teraction for such objects, future work should bring together
our method with 3D articulated object inference. This is
challenging and we believe it is critical to make progress on
sub-problems, for which ARCTIC can be leveraged.
Toy objects: Some of our objects are toys, which are not
to scale and lack some of the visual complexity of real ob-
jects. However, the aim of ARCTIC is to study the physical
dynamics between hand-object motions.
SMPL-X for capturing contact: Since we use SMPL-
X/MANO as our human representation, the human geome-
try does not capture skin deformation during contact. While
a deformable human body/hand model would be ideal for
capturing true contact, developing such models is not a goal
of ARCTIC. Further, marker and image data ARCTIC can
be used to fit a deformable model if developed. Our 3D an-
notation and contact capture pipeline follows GRAB [65].
In particular, we use MoSh++ to fit SMPL-X to the markers,
producing highly accurate fits. We adapt the contact capture
pipeline from GRAB. GRAB contact labels are widely used
in the community to support projects such as [21, 64, 84].



Markers on hands in our RGB images: We use optical
marker-based capture to provide accurate hand and object
poses, thus potentially introducing label noise. However,
our hand markers are minimally intrusive (1.5mm in radius)
and barely visible when images are resized for inputs.
Degree of freedom in our objects: We construct ARCTIC
with objects of 1 DoF. This is because many items designed
for human interaction often have a single axis of rotation as
they are easy to produce and intuitive to manipulate (e.g.,
doors, refrigerators, ovens, pliers, etc.). Thus, objects in
ARCTIC are representative of a broad class of objects found

in homes and businesses. Importantly, reconstructing inter-
action with such objects involves occlusion, depth ambigu-
ity, and contact estimation. These issues also apply to ob-
jects with more DoF. Further, we capture more diverse hand
poses and more challenging hand-object interactions com-
pared to existing hand-object datasets. Future work should
expand the number and complexity of objects to further
study the problems of depth ambiguity and occlusion.
Approval for human subject data: Subject data was col-
lected with written, prior, informed consent and the data
collection was reviewed by the university ethics board.



Figure 9. Qualitative results of InterField-SF. Best viewed in color and zoomed in.



Figure 10. Overlay of ARCTIC ground-truth We overlay the ground-truth in our dataset. Examples here are randomly sampled from
ARCTIC. Note that although the RGB images contain both human bodies and hands, the hand region is clearly visible when zoomed in,
thanks to our high resolution RGB images.
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